Skip to content

Toward Autonomous Underwater Mapping in Partially Structured 3D Environments

Mark VanMiddlesworth, S.M., 2014
John Leonard, Advisor

Motivated by inspection of complex underwater environments, we have developed a system for multi-sensor SLAM utilizing both structured and unstructured environmental features. We present a system for deriving planar constraints from sonar data, and jointly optimizing the vehicle and plane positions as nodes in a factor graph. We also present a system for outlier rejection and smoothing of 3D sonar data, and for generating loop closure constraints based on the alignment of smoothed submaps. Our factor graph SLAM backend combines loop closure constraints from sonar data with detections of visual fiducial markers from camera imagery, and produces an online estimate of the full vehicle trajectory and landmark positions. We evaluate our technique on an inspection of a decomissioned aircraft carrier, as well as synthetic data and controlled indoor experiments, demonstrating improved trajectory estimates and reduced reprojection error in the final 3D map.