Skip to content

Research Projects for New Students

Several funded research projects for new students are listed below.

Many other faculty are interested in attracting students to study with them.  Several have proposals pending that may be funded by the time admissions decisions are made. Funding may also come from internal MIT-WHOI fellowship sources, or external Fellowship sources for which prospective students are encouraged to apply. See list at

We encourage prospective students to explore faculty's research areas of interest and contact them directly. When contacting them, please state your research interests and include your CV and an unofficial transcript.

Applied Ocean Science and Engineering

The MSEAS group at MIT has graduate student positions available. Our research vision is to develop and transform ocean modeling, data assimilation and inference schemes to quantify regional ocean dynamics on multiple scales. Our group creates and utilizes new models and methods for multiscale modeling, uncertainty quantification, data assimilation and the guidance of autonomous vehicles. We then apply these advances to better understand physical, acoustical and biological interactions. Our environment is collaborative within a lively group of students and researchers. We seek both fundamental and applied contributions to build knowledge and benefit society. Our present research projects are outlined here: and our recent publications here

Biological Oceanography

check back

Chemical Oceanography

Subduction zones are the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively moved between terrestrial reservoirs by plate tectonics. Dr. Pete Barry is seeking a doctoral student to study the volcanic fluid and gas emissions in the Andean Convergent Margin (ACM). Specifically, a position is available on an NSF funded project to gain a better understanding of the deep carbon cycle and natural carbon sequestration processes in Earth’s crust. This project will characterize the extent of mineralogical and biological carbon sequestration along the geologically well-studied ACM, using an integrated isotope approach (noble gases and stable isotopes). Extensive field campaigns and mass spectrometry work will be a cornerstone of this project.  More information on the Barry Lab and the research group can be found at

Deep ocean circulation plays a key role in global climate change over a range of timescales, and neodymium (Nd) isotopes have the potential to trace these processes. Dr. Sophie Hines is seeking a doctoral student to investigate the mechanisms that set the Nd isotopic composition of North Atlantic Deep Water, a global Nd isotopic endmember that is implicated in major climate transitions in the past. This position is part of an NSF-funded project (with collaborators at University of Delaware and California State University Bakersfield) that will involve a research cruise to the Labrador Sea. In addition, the student will be trained in trace metal chemistry and mass spectrometry. Students from diverse backgrounds are encouraged to apply. More information can be found at

Ono laboratory for Stable Isotope Geochemistry (based at MIT) is seeking a doctoral student to join the team to explore rock weathering as a sink of carbon dioxide. Burning fossil fuels and the cement industry adds approximately 30 Gt CO2 per year. Weathering rocks is a natural process that consumes about 1.5Gt of CO2 per year. The project seems to investigate a way to accelerate rock weathering as part of a mitigation strategy for increasing atmospheric CO2. The student would design and test biological and chemical catalysts, and conduct laboratory experiments to investigate the rates of mineral carbonation.

Marine Geology and Geophysics

Dr. Veronique Le Roux is seeking a doctoral student to be part of an NSF-funded interdisciplinary study (collaboration with Scripps and BC) on water/volatiles in lower crustal cumulates from arc settings. The student will be primarily trained in using and developing secondary ion mass spectrometry techniques and other geochemical techniques (e.g., SEM-EDS, LA-ICP-MS, EPMA etc.), with opportunities to contribute to discussion related to rheology and numerical modeling of crustal foundering, as part of the larger collaborative project. The goal is to use exposed terranes of lower crustal cumulates to determine the water contents of arc roots and primary arc magmas, building on novel results from our preliminary study. The Le Roux lab strongly encourages people of diverse backgrounds to reach out and apply.

Dr. Catherine Rychert is seeking one or more graduate students to work on an NSF funded project entitled, "Mantle Dynamics and Plate Tectonics Constrained by Converted and Reflected Seismic Wave Imaging Beneath Hotspots,” for summer or fall 2023 enrolment in the Woods Hole - MIT joint program. The student will use novel techniques to image mantle seismic discontinuities beneath a classic continental hotspot - Yellowstone, a classic oceanic hotspot -Hawaii, and a non-hotspot, beneath the Atlantic. Discontinuities of particular interest include the lithosphere-asthenosphere boundary and the mantle transition zone. Imaging results will be compared with experimental predictions for material properties to achieve a better understanding of Earth’s interior dynamics in these exciting places. This work is in collaboration with Peter Shearer at Scripps Institution of Oceanography.

Drs. Veronique Le RouxAndrew Cross, and Rellie Goddard are seeking a doctoral student to work on an NSF-funded project entitled “Strength of the Oceanic Lower Crust: New Experimental and Microstructural Constraints”. The project will involve high-pressure laboratory deformation experiments on aggregates of plagioclase and clinopyroxene at Brown University (in collaboration with Dr. Greg Hirth), and microstructural and geochemical analyses of lower crustal rocks from the Southwest Indian Ridge, using SEM, EBSD, EPMA, and LA-ICP-MS methods. Ultimately, the goal of the project is to determine how ductile deformation, and the strength of the oceanic lower crust, influence the nucleation and longevity of detachment faulting along ultraslow-spreading mid-ocean ridges. The student will also have the opportunity to help develop numerical models of oceanic detachment faulting and mid-ocean spreading in collaboration with researchers at Boston College (led by Dr. Mark Behn). 

Physical Oceanography

Dr. Amala Mahadevan is seeking a doctoral student for the following project.

Quantitative approaches for oceanic microbial ecosystems and carbon cycling

Oceanic ecosystems are crucial for the ocean’s biological pump and the sequestration of carbon. However, the diversity of microbial organisms and nonliving organic matter is so large, that it is difficult to exhaustively include processes that affect the cycling of carbon. We are limited in our knowledge of rates of transfer (growth/ decay) of carbon pools and organisms and the models that we design are sensitive to these. We also face the challenge of representing physical processes at small scales (from centimeters to meters) and environmental variability (from tens of meters to kilometer scales) in global carbon cycle models. Further, the organisms and microbial communities respond to ocean transport and physics. Hence, new approaches are needed to deal with the diversity of function and process, as well as scale, in models for microbial ecosystems and the carbon cycle. The PhD student will explore mathematically tractable approaches to modeling the complexity of oceanic microbial ecosystems, so as to make progress in understanding the carbon cycle, which is intrinsic to the earth’s climate. The research will be interdisciplinary, including physical oceanography, mathematics and microbial biology, There will be opportunities for field work and collaboration with other scientists on the project. This position is dependent on a pending proposal.