Trojan Horses in the Marine Realm: Characterizing Protistan Parasite Ecology in Coastal Waters
Taylor Sehein, Ph.D., 2022
Virginia Edgcomb, Advisor
Protists are taxonomically and metabolically diverse drivers of energy and nutrient flow in the marine environment, with recent research suggesting significant roles in global carbon cycling throughout the water column. Top-down controls on planktonic protists include grazing and parasitism, processes that both contribute to nutrient transfer and biogeochemical cycling in the global ocean. Recent global surveys of eukaryotic small subunit ribosomal RNA molecular signatures have highlighted the fact that parasites belonging to the marine alveolate order Syndiniales are both abundant and ubiquitous in coastal and open ocean environments, suggesting a major role for this taxon in marine food webs. Two coastal sites, Saanich Inlet (Vancouver Island, BC) and Salt Pond (Falmouth, MA, USA) were selected as model ecosystems to examine the impacts of Syndinian parasitism on protist communities. Data presented in this thesis combines high-resolution sampling, water chemistry (including nutrients) analyses, molecular marker gene analyses, fluorescence in-situ hybridization, and modeling to address key knowledge gaps regarding syndinian ecology. Information is presented on previously undescribed putative host taxa, the prevalence of syndinian parasites and infections on different hosts in coastal waters, and a framework for modeling host-parasite interactions based on field observations.