Skip to content

Towards Basin-Scale in-situ Characterization of Sea-Ice Using an Autonomous Underwater Glider

Zachary Duguid, S.M., 2020
Richard Camilli, Advisor

This thesis presents an Autonomous Underwater Glider (AUG) architecture that is intended for basin-scale unattended survey of Arctic sea-ice. The distinguishing challenge for AUG operations in the Arctic environment is the presence of year-round sea-ice cover which prevents vehicle surfacing for localization updates and shore-side communication. Due to the high cost of operating support vessels in the Arctic, the proposed AUG architecture minimizes external infrastructure requirements to brief and infrequent satellite updates on the order of once per day. This is possible by employing onboard acoustic sensing for sea-ice observation and navigation, along with intelligent management of onboard resources.

To enable unattended survey of Arctic sea-ice with an AUG, this thesis proposes a hierarchical acoustics-based sea-ice characterization scheme to perform science data collection and assess environment risk, a multi-factor terrain-aided navigation method that leverages bathymetric features and active ocean current sensing to limit localization error, and a set of energy-optimal propulsive and hotel policies that react to evolving environmental conditions to improve AUG endurance. These methods are evaluated with respect to laboratory experiments and preliminary field data, and future Arctic sea-ice survey mission concepts are discussed.