
Modeling ocean transport and its biogeochemical
impacts at global, regional, and sub-meso scales

by

Jing He
B.A., Middlebury College (2017)

Submitted to the Department of Earth, Atmospheric and Planetary Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

June 2023

© 2023 Jing He. All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joint Program in Oceanography/Applied Ocean Science and Engineering

Massachusetts Institute of Technology
& Woods Hole Oceanographic Institution

March 17, 2023

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Amala Mahadevan

Thesis Supervisor
Woods Hole Oceanographic Institution

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Amala Mahadevan

Chair, Joint Committee for Physical Oceanography
Massachusetts Institute of Technology

& Woods Hole Oceanographic Institution



2



Modeling ocean transport and its biogeochemical
impacts at global, regional, and sub-meso scales

by

Jing He
Submitted to the Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology & Woods Hole Oceanographic Institution
on March 17, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Improving understanding of how carbon is cycled through the ocean is crucial for
predicting, mitigating, and adapting to climate change. This thesis explores how hor-
izontal and vertical currents at different scales impact biogeochemical cycling through
the redistribution of tracers such as alkalinity, nutrients, and carbon. Starting at the
large scale in Chapter 2, we use a mesoscale-permitting global ocean model to in-
vestigate ocean alkalinity enhancement as a negative emissions technology. We find
that local ocean dynamics are crucial for determining optimal alkalinity addition lo-
cations that maximize carbon removal, while minimizing adverse ecological impacts.
Among the best locations identified are coastal upwelling systems, which are also
regions of high primary productivity due to the large influx of nutrients to the sur-
face. We take a closer look at coastal upwelling systems in Chapter 3 to identify
the dynamics that impact source waters of steady-state upwelling at a regional scale,
and we propose a scaling relation in which wind stress and stratification sets the up-
welling source depth. Looking more closely at an upwelling front in a high-resolution
submesoscale-permitting model, we see enhanced vertical velocities that reach 𝒪(100
m d−1). These submesoscale vertical velocities can enhance vertical transport, but
they are very difficult to measure. In Chapter 4, we demonstrate the possibility of di-
agnosing the 3D submesoscale vertical velocity field from remotely-observable surface
ocean observations with machine learning, which motivates future satellite missions
for high-resolution remote-sensing of the surface ocean. Finally in Chapter 5, we eval-
uate the importance of resolving smaller scale submesoscale dynamics on the vertical
transport of nutrient and phytoplankton carbon biomass in upwelling systems.

Thesis Supervisor: Dr. Amala Mahadevan
Title: Senior Scientist
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

It can be difficult for many people (even oceanographers), as mostly land-dwellers, to

fully appreciate the vastness of the ocean and the out-sized role it plays in our lives.

Just looking at carbon storage capacity alone, the ocean contains ∼50 times more

carbon than the atmosphere and over 10 times more carbon than in all the plants

and soils on land (Friedlingstein et al. 2022). One of the many services we have to

thank the ocean for is regulating atmospheric CO2 concentrations, the leading cause

of anthropogenic (human-caused) climate change. The ocean takes up about 30% of

human-made CO2 emissions through fossil fuel burning and land-use change (Fig. 1-

1, Friedlingstein et al. (2022)), which is a tremendous help in slowing down global

warming, but also comes at the cost of global ocean acidification (Sabine et al. 2004;

Gruber et al. 2019). Unfortunately this help is not nearly enough, and we as a society

need to rapidly decarbonize and achieve net negative emissions on the order of a few

gigatonnes of carbon per year by 2050 to meet the Paris Agreement’s ambitious goal

of limiting warming to < 2 ∘C by 2100 (IPCC 2021). Given the ocean’s impressive

storage capacity and the urgency of our climate crisis, there are increasingly more

proposed ocean-based negative emissions technologies (NETs) that aim to speed up

and enhance oceanic uptake of CO2 (National Academies of Sciences and Medicine

2021). However, with all NETs, we need to ensure that we are not doing more harm

than good. This is a nontrivial task, as we are still trying to quantify and understand

the natural ocean carbon cycle, a complex system in which physics, chemistry, and

biology are intimately intertwined.

This dissertation primarily focuses on the physical transport of biogeochemical

17



Figure 1-1: Schematic of the global carbon cycle. Bold arrows at the top indicate
perturbations caused by anthropogenic activities globally averaged from 2011-2020,
while thin arrows indicate fluxes and stocks of the natural carbon cycle. Numbers are
all from Canadell et al. (2022), with the exception of carbon stocks in coasts which
is from (Price and Warren, 2016). Figure is from Friedlingstein et al. (2022).

tracers that make up the carbon cycle, such as alkalinity, nutrients, dissolved in-

organic carbon, and particulate and dissolved organic carbon. The remainder of

this introductory chapter provides context for the rest of the thesis by providing an

overview of the oceanic carbon cycle, ocean-based negative emissions technologies,

and the role of vertical and horizontal transport at different scales.

1.1 The oceanic carbon cycle

The exchange of CO2 across the air-sea interface depends on the difference in partial

pressures of CO2 (𝑝CO2) between the atmosphere and ocean. If the 𝑝CO2 is higher in

the atmosphere than in the ocean, then CO2 will dissolve into the ocean. Dissolved

CO2(aq) in seawater undergoes a series of chemical reactions that together make up

18



the carbonate system, described by the equation (Zeebe and Wolf-Gladrow 2001):

CO2(atm)
−−⇀↽−− CO2(aq) +H2O −−⇀↽−− H+ +HCO −

3

−−⇀↽−− 2H+ + CO 2−
3 .

(1.1)

Dissolved CO2(aq) reacts with water to form carbonic acid, which is a weak acid that

quickly dissociates into a proton (H+) and biocarbonate ion (HCO−
3 ). Bicarbonate

further dissociates into another proton and the carbonate ion (CO2−
3 ). Carbon is

stored in these different dissolved forms (dissolved CO2, bicarbonate, and carbonate),

which together is coined “DIC” for “dissolved inorganic carbon.” DIC is the largest

pool of oceanic carbon (Fig. 1-1), with higher concentrations at depth, and about

99% of DIC is in the form of bicarbonate and carbonate, due to the large amount of

alkalinity in the ocean.

Only the surface ocean, defined as above the thermocline, is in contact with and

can equilibrate with the atmosphere. A variety of processes transport carbon from

the surface to the deep ocean below the mixed layer to maintain the vertical DIC

gradient (low DIC at the surface, high DIC at depth). Depending on the depth of

carbon sequestration, the deep ocean can be out of contact from the atmosphere

for 100s to 1000s of years (Siegel et al. 2021), making it a potentially long term

storage solution on human timescales. Broadly speaking, there are two ways carbon

is transported from the surface to deep ocean: the solubility pump, and the biological

carbon pump (BCP), which were first identified by Volk and Hoffert (1985). The

solubility pump is based purely on chemistry and physics; its premise is that CO2 is

more soluble in cold water, and cold water is denser and tends to sink to the deep

ocean. The Biological Carbon Pump, as the name implies, refers to the transport of

organic carbon stemming from phytoplankton production (Fig. 1-2). Phytoplankton

are microscopic photosynthesizing organisms that make up half of primary production

on Earth and form the base of the marine food web. Using sunlight and nutrients,

phytoplankton fix inorganic dissolved carbon into organic carbon stored in their cells.

This organic carbon can then become part of other organisms that eat phytoplankton,
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and the majority of this organic carbon stays in the upper ocean where it is recycled

through the microbial loop. A small fraction of the organic carbon is transported to

the deep ocean where it is remineralized back to DIC at depth. These various export

pathways include (Boyd et al. 2019): gravitational sinking of organic particles such

as dead phytoplankton and zooplankton fecal pellets (Sarmiento and Gruber 2006);

vertical migration by zooplankton and fish that consume organic matter at the surface

at night, and respire the carbon at depth during the day (Steinberg and Landry 2017;

Archibald et al. 2019); and physical transport mechanisms including seasonal mixed

layer shoaling (Dall’Olmo et al. 2016), large-scale (100-1000 km) physical circulation

(Lévy et al. 2013), and subduction driven by mesoscale (10-100 km) and submesoscale

(1-10 km) eddies (Lévy et al. 2013; Omand et al. 2015).

Figure 1-2: Simplified schematic of the biological carbon pump, showing ocean uptake
of atmospheric CO2, phytoplankton growth in the upper sunlit zone, and carbon
export to depth. Ocean upwelling eventually brings sequestered carbon back to the
surface at different timescales. Figure is from the NASEM Report (2021) and created
by Natalie Renier, Woods Hole Oceanographic Institution.

The biological carbon pump is responsible for about 2/3 of the DIC gradient

between the surface and deep ocean, while the solubility pump is responsible for the

remaining 1/3 (Sarmiento and Gruber 2006). Due to difficulties in measuring carbon

fluxes across the entire ocean, model uncertainty, and challenges in resolving all the

different pathways from observations and models, there are large uncertainties in the

total export rate of the BCP as well as the relative importance of different pathways
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(Boyd et al. 2019; Nowicki et al. 2022). Improving our ability to quantify the BCP

will be key for better understanding the natural ocean carbon cycle, and how it might

change in a warming planet and under different potential NETs.

1.1.1 Ocean-based negative emission technologies

Marine NETs attempt to manipulate some part of the natural carbon cycle to enhance

ocean uptake of atmospheric CO2. The most well-studied NET is iron fertilization,

which seeks to increases photosynthesis by phytoplankton, leading to more air-sea

draw-down of CO2, and ideally increased export of organic carbon to depth (National

Academies of Sciences and Medicine 2021). The idea of artificial iron fertilization

was spurred by Martin (1990)’s hypothesis that natural iron fertilization of the ocean

from dust was responsible for the low atmospheric CO2 levels of the Last Glacial

Maximum about 20,000 years ago. This paper prompted a number of experiments,

which demonstrated that iron fertilization does indeed lead to enhanced phytoplank-

ton blooms and CO2 uptake in high nutrient low chlorophyll (HNLC) waters where

phytoplankton are limited by iron (De Baar et al. 2005; Boyd et al. 2007; Yoon et al.

2018). But, it is unclear how much increase in export is achieved, and how long the

carbon is sequestered for. These questions relate back to the difficulty of measuring

and quantifying the BCP, which is crucial for verifying carbon dioxide removal (CDR)

projects. In addition, iron fertilization provides a cautionary tale of the need for reg-

ulation in the CDR space, as some private rogue actors sought to take advantage

and profit off of a method that was not well proven yet (Fountain 2012), leading to

potential unintended consequences and widespread public disapproval.

Another CDR method that was first proposed by Kheshgi (1995) and is gaining

popularity in recent years is ocean alkalinity enhancement (OAE), which aims to

manipulate the inorganic carbonate system in Eqn. 1.1. The idea is that by adding

alkalinity—defined as a proton acceptor, such as OH− (pure alkalinity) or a min-

eral like limestone (CaCO3) that increases alkalinity when dissolved—to the surface

ocean, we shift the equilibrium in Eqn. 1.1 to the right towards more bicarbonate

and carbonate, and lowering the concentration of dissolved CO2 in the ocean. This
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increases ocean uptake of CO2 from the atmosphere. The removed carbon is stored

as DIC, which has a residence time of ∼100,000 years, making it an effectively perma-

nent storage solution on human timescales (Renforth and Henderson 2017). Modeling

studies have demonstrated that OAE has the potential to uptake and store nearly

all anthropogenic emissions, but that leads to drastic increases in the ocean pH and

calcite/aragonite saturation state Ω (where Ω < 1 is corrosive to marine organisms

with calcium carbonate shells) with unknown ecological consequences. Another major

concern is that the increase in saturation state would lead to an increase in calcium

carbonate precipitation (the formation of CaCO3 particles) which would sink and

remove alkalinity from the surface ocean, counteracting the effect of OAE (Bach

et al. 2019). Early microcosm experiments in the North Atlantic surprisingly showed

no significant increase in biologically produced CaCO3 even at extreme amounts of

added alkalinity addition of +2000 𝜇mol/kg (about doubling the total alkalinity),

but broader studies in different regions are still needed (Subhas et al. 2022). While

OAE is attracting a lot of attention recently, there are still many big uncertainties

and questions regarding its effectiveness, measurement and verification, fate of added

alkalinity in the ocean, and unintended consequences, especially if it is to be deployed

at scale.

1.2 Role of ocean dynamics

All of the processes mentioned above, including the natural carbon cycle and any

human manipulations of it, occur in the context of a moving ocean. Ocean circulation

consists of processes operating at a wide range of temporal and spatial scales, ranging

from the global thermohaline circulation spanning tens of thousands of kilometers, to

turbulence at the molecular scale, and myriad scales in between. Since biogeochemical

tracers (e.g. phytoplankton, DIC, alkalinity, nutrients) are carried along with currents

and can be transported significant distances, taking the background flow field into

account is crucial for understanding biogeochemical cycling.

For instance, the strength of the biological carbon pump is dependent on the phy-
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toplankton growth rate, which is controlled from the bottom-up by light and nutrient

limitation. Light attenuates exponentially in the water column, and photosynthe-

sis can only occur in the upper sunlit zone (Fig. 1-2) or “euphotic zone,” defined as

the depth where light is 1% of its surface value. Nutrients are typically depleted

at the surface ocean due to photosynthesis and have higher concentrations at depth

(Omand and Mahadevan 2015), where they are replenished through bacterial rem-

ineralization. Thus, physical processes that vertically transport nutrients from depth

into the euphotic zone can lead to enhanced primary production. On the other hand,

downwelling of phytoplankton out of the euphotic zone prevents further photosyn-

thesis, but would enhance carbon export depending on how deep the phytoplankton

are subducted. Vertical transport is also generally important because of the large

vertical gradient in many other properties, such as DIC, alkalinity, and organic car-

bon, and vertical advection can help to subduct carbon or bring it in contact with

the atmosphere.

Vertical transport also relates to the BCP through the concept of “new produc-

tion,” which was first defined by Dugdale and Goering (1967) as the primary pro-

duction supported by inorganic “new” sources of nutrients, such as nitrate, into the

euphotic zone. Nitrate is predominantly supplied to the euphotic zone through up-

welling and diffusion, with secondary sources of nitrate stemming from river and

sewage runoff, as well as from the atmosphere and through nitrogen fixation (Dug-

dale and Goering 1967). In contrast, primary production that uses “old” or recycled

nutrients that were already in the euphotic zone, such as ammonium NH+
4 from bacte-

rial remineralization, is termed “regenerated production.” In order for phytoplankton

to maintain its population at steady state, globally new production must equal the

carbon export due to the BCP (Dugdale and Goering 1967; Eppley and Peterson

1979). A simplified schematic of this nutrient cycling in the upper ocean is shown

in Fig. 1-3. In sum, the vertical transport of nutrients promotes primary production

and specifically new production, which can be an indicator of the strength of the

biological carbon pump.
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Figure 1-3: Simplified schematic of nutrient cycling in the upper ocean. Here, nitrate
𝑁 is supplied to the euphotic zone through upwelling, and it supports new produc-
tion. Phytoplankton die naturally or are consumed through predation and are then
remineralized into ammonium or old nutrients 𝑂, which supports regenerated pro-
duction. Ammonium is further remineralized into nitrate. In addition, there is an
export of organic matter through the sinking of phytoplankton or zooplankton fecal
pellets. In steady state, new production balances export production.

1.2.1 Coastal upwelling

Some of the most biologically productive parts of the ocean, resulting from intense

vertical transport of nutrients to the surface, are coastal upwelling regions (Fig. 1-5).

It is estimated that coastal upwelling regions make up less than 2% of the ocean’s

surface area, yet they account for about 11% of the world’s oceanic primary produc-

tion (Chavez and Toggweiler 1995), and the primary productivity in them supports

about 20% of global fish catches (Pauly and Christensen 1995). Depending on the

location, coastal upwelling regions may sequester copious amounts of CO2 into the

ocean via the BCP (Hales et al. 2005), or they could outgas CO2 to the atmosphere

through the upwelling high DIC waters (Friederich et al. 2008; Torres et al. 2002).

Coastal upwelling is driven by winds blowing parallel to a coast. At steady state,

the dominant momentum balance in the surface frictional boundary layer is between

rotation and friction. The resulting surface ocean velocity is not in the same direc-
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Figure 1-4: Coastal upwelling schematic, from Bakun (1973).

tion of the wind, but 45∘ to the right (left) of the wind in the Northern (Southern)

Hemisphere, and the ocean velocity rotates with depth in the surface boundary layer

(Ekman 1905). The depth integrated transport in the boundary layer (also known

as the Ekman layer) is given by 𝜏/𝜌𝑓 , where 𝜏 is the wind stress, 𝜌 is the seawater

density, and 𝑓 is the Coriolis parameter. This depth-integrated transport is referred

to as “Ekman transport.” When this theory is applied to equatorward winds blowing

parallel to eastern boundaries, also known as Eastern Boundary Upwelling Systems

(EBUS) (Fig. 1-5a), the Ekman transport is directed offshore and is balanced by

upwelling from depth (Fig. 1-4). The upwelling rate is equal to the offshore Ekman

transport because of continuity, and this coastal upwelling occurs largely within a

Rossby radius of the coast.

Ekman transport theory has been broadly applied to quantify upwelling strength

based on the magnitude of the alongshore wind stress (e.g., Huyer 1983; Bakun 1990;

Sydeman et al. 2014). Coastal upwelling is extensively well-studied in the literature,

and there have been many expansions of Ekman theory to take into account the cross-

shore structure of the wind and wind-stress curl driven upwelling, and the influence

of onshore geostrophic currents (Estrade et al. 2008; Marchesiello and Estrade 2010;

Rossi et al. 2013; Jacox et al. 2018). Ekman transport alone is not always a good

indicator of nutrient upwelling and new production though, because that relies on

not just the upwelling strength, but also the nitrate concentration of upwelled source
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waters (Jacox et al. 2018). Furthermore, mixing of upwelled waters with surface

waters is important for allowing phytoplankton growth, because if we adiabatically

upwell water deplete of phytoplankton, then the surface phytoplankton is advected

offshore and cannot access the nutrients. What sets the upwelling source depth, how

might we expect it to change in a warming climate, and what impacts does that

have on quantifying the upwelling nutrient flux and new production, are some of the

motivating questions for Chapters 3 and 5.

NASA Ocean 
Cape Town

100 km
100 km

a b c

Figure 1-5: Example of chlorophyll variability across different spatial scales. a) On a
global scale, climatological chlorophyll-a concentrations are low in oligotrophic sub-
tropical gyres and enhanced in coastal upwelling regions (highlighted in boxes), as
well as in the Southern Ocean and the North Atlantic. Chlorophyll data is from
NASA SEAWIFS climatology. b) Zoom into the Benguela Upwelling System of the
coast of Southwest Africa, ocean color image is from Aqua/MODIS on Sep. 2, 2017.
c) Zooming in to a 100 km by 100 km patch in the Benguela Upwelling System reveals
chlorophyll structures on the scale of 1-10 km.

1.2.2 Submesoscale vertical transport

If we look closely at an ocean color image from a coastal upwelling region, such as

the Benguela Upwelling System in Fig. 1-5b, we clearly see the ubiquity of mesoscale

eddies, which have spatial scales on the order of the Rossby deformation radius and

nearly in geostrophic balance (the balance of the pressure gradient force and rota-
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Figure 1-6: Example of a model submesoscale vertical velocity field. Figure from
Mahadevan, 2019. Encyclopedia of Ocean Sciences.

tion). If we zoom in even further to a 100 km × 100 km patch of ocean in this

upwelling system, we find even smaller eddies and filaments with scales of 1–10 km.

This smaller scale is aptly named “submesoscale,” which is dynamically defined as

having 𝒪(1) Rossby and Richardson numbers. The Rossby number is a dimension-

less number representing the ratio of advection to rotation, while the Richardson

number represents the ratio of stratification to vertical shear. Thus, submesoscale

phenomena are not as constrained by rotation as geostrophic currents, allowing for

enhanced vertical velocities 𝑤 of up to ∼100 m d−1, an order of magnitude larger

than mesoscale 𝑤 (Thomas et al. 2008). Another characteristic of submesoscale ver-

tical velocities is that they are skewed to have more intense downwelling velocities

concentrated in thin filaments, with weaker upwelling velocities spread over a larger

area (Shcherbina et al. 2013), as can be seen in Figure 1-6.

An open question is to what extent do submesoscale dynamics affect the larger

scale ocean state. Submesoscale dynamics may be particularly important for primary

production because biological timescales align with submesoscale time scales (Freilich

et al. 2022; Mahadevan 2016). Recent studies also indicate that resolving the subme-

soscales is important for the vertical transport of heat, carbon, and nutrients between
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the surface and deep ocean (e.g. Omand et al. 2015; Su et al. 2018; Ruiz et al. 2019;

Uchida et al. 2019), as their effects are not fully parameterized in coarser resolution

global ocean or climate models. On the other hand, Resplandy et al. (2019) finds

that while submesoscale eddies lead to local hotspots of intense carbon subduction,

they contribute very little to the annual carbon flux on a regional scale due to com-

pensation between upward and downward fluxes. A challenge to studying the effects

of submesoscale dynamics on vertical transport is the difficulty in measuring the very

small and noisy vertical velocity over a large region. Chapters 4 and 5 aim to make

progress on this front.

1.2.3 Horizontal transport

In addition to vertical transport, we would be remiss to not also mention the impor-

tant role lateral advection and diffusion plays in transporting and dispersing biogeo-

chemical tracers large distances in the ocean. The ocean has a very small aspect ratio

given by 𝐷/𝐿, where 𝐷 is the depth and 𝐿 is the horizontal scale. Consequently, hor-

izontal motions are often orders of magnitude larger than vertical motions, which are

also constrained by the ocean’s stratification. The ability of ocean currents to rapidly

transport and disperse material has been topic of interest that has been studied for

decades (Richardson and Stommel 1948; Ebbesmeyer and Ingraham Jr 1994), with

many applications ranging from nuclear waste discharge (Rypina et al. 2013) to larval

dispersal (Pineda et al. 2007). It is no surprise that lateral transport is also important

to consider in the context of NETs that involve adding material into the ocean that

will carried far distances by currents, such as alkalinity. Moreover, ocean currents are

extremely diverse across the globe, ranging from persistently strong strong western

boundary currents, to currents that reverse seasonally with the Monsoon in the Ara-

bian Sea and Bay of Bengal, and all the eddies in between (Fig. 1-7). In Chapter 2,

we investigate what this variability in ocean dynamics at a global level means for

coastal ocean alkalinity enhancement.
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Figure 1-7: Global ocean sea surface temperature and currents from Estimating the
Ocean Circulation and Climate, Phase II (ECCO2). Lines indicate sea surface cur-
rents, and they are colored by sea surface temperature, with reds indicating warmer
temperature and blues representing colder temperatures. The horizontal resolution
is 0.25∘. Image is from NASA Scientific Visualization Studio.

1.3 Overview of thesis

This thesis contains four chapters that altogether contribute to improving our un-

derstanding of the role of physical transport in the ocean carbon cycle. More basic

science understanding of the ocean carbon cycle is needed, and this work contributes

to improving fundamental estimates of vertical nutrient transport and carbon export

in highly productive coastal upwelling systems, which are of relevance to the ocean’s

natural biological carbon pump. At the same time, we cannot wait to act on cli-

mate change, so in parallel with basic science research, studies of negative emissions

technologies are also needed. This work contributes to the latter by exploring the

feasibility and practical constraints of coastal ocean alkalinity enhancement.

Starting at the global scale, in Chapter 2 we use a mesoscale-permitting global

ocean model to investigate ocean alkalinity enhancement as a negative emission tech-

nology, and we find that local ocean dynamics are crucial for determining optimal

alkalinity addition locations that maximize carbon removal while minimizing adverse
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impacts on the local ecology. Among the best locations identified are coastal up-

welling regions, which are also regions of high primary productivity due to large

vertical transport of nutrients. We take a closer look at coastal upwelling systems

in Chapter 3 to identify the dynamics that impact source waters of steady-state up-

welling at a regional scale, and we find that wind stress and stratification sets the

depth of upwelling. Zooming in even further on the coastal upwelling front, in a

submesoscale-permitting model, enhanced vertical velocities at fine-scale fronts, ed-

dies, and filaments have the potential for enhanced vertical transport, but are difficult

to observe. In Chapter 4, we demonstrate that it is possible to diagnose the 3D subme-

soscale vertical velocity from remotely-observable surface ocean data using machine

learning, which movtivates existing and future satellite missions for high-resolution

remote-sensing of surface ocean. Finally in Chapter 5, we evaluate the impacts of

the source depth theory and predicted 3D 𝑤 field on nutrient upwelling and carbon

export. We summarize the thesis and provide an outlook for future directions of

research in Chapter 6.
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Chapter 2

Limits and CO2 equilibration of near-

coast alkalinity enhancement

Abstract

Ocean alkalinity enhancement (OAE) has recently gained attention as a potential
method for carbon dioxide removal (CDR) at gigatonne (Gt) scale, with near-coast
OAE operations being economically favorable due to proximity to mineral and energy
sources. In this paper we study critical questions which determine the scale and
viability of OAE. Which coastal locations are able to sustain a large flux of alkalinity
at minimal pH and ΩArag (aragonite saturation) changes? What is the interference
distance between adjacent OAE projects? How much CO2 is absorbed per unit of
alkalinity added? How quickly does the induced CO2 deficiency equilibrate with the
atmosphere? Choosing relatively conservative constraints on ∆pH or ∆ΩArag, we
examine the limits of OAE using the ECCO LLC270 (0.3∘) global circulation model.
We find that the sustainable OAE rate varies over 1–2 orders of magnitude between
different coasts and exhibits complex patterns and non-local dependencies which vary
from region to region. In general, OAE in areas of strong coastal currents enables
the largest fluxes and depending on the direction of these currents, neighboring OAE
sites can exhibit dependencies as far as 400 km or more. At these steady state fluxes
most regional stretches of coastline are able to accommodate on the order of 10s to
100s of megatonnes of negative emissions within 300 km of the coast. We conclude
that near-coastal OAE has the potential to scale globally to several Gt CO2 yr−1 of
drawdown with conservative pH constraints, if the effort is spread over the majority of
available coastlines. Depending on the location, we find a diverse set of equilibration
kinetics, determined by the interplay of gas exchange and surface residence time. Most
locations reach an uptake efficiency plateau of 0.6–0.8 mol CO2 per mol of alkalinity
after 3–4 years, after which there is only slow additional CO2 uptake. Regions of

This chapter was originally published as He, J., and M. D. Tyka, 2023a: Limits and CO2 equili-
bration of near-coast alkalinity enhancement. Biogeosciences, 20, 27–43, doi: 10.5194/bg-20-27-2023

31



significant downwelling (e.g., around Iceland) should be avoided by OAE deployments,
as in such locations up to half of the CDR potential of OAE can be lost to bottom
waters. The most ideal locations, reaching a molar uptake ratio of around 0.8, include
North Madagascar, California, Brazil, Peru and locations close to the Southern Ocean
such as Tasmania, Kerguelen and Patagonia, where the gas exchange appears to occur
faster than the surface residence time. However, some locations (e.g., Hawaii) take
significantly longer to equilibrate (up to 8–10 years) but can still eventually achieve
high uptake ratios.
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2.1 Introduction

To mitigate the worst effects of climate change, the Paris Agreement aims to limit

global temperature warming to below 2 ∘C. This requires not only rapid decarboniza-

tion, but also negative CO2 emission technologies (NET) (Rogelj et al. 2018). About

150–800 GtCO2 of net negative emissions are needed in the IPCC SSP1-1.9–SSP1-2.6

scenarios (in addition to decarbonization) to limit global warming to 2 ∘C by 2100,

and this scenario further assumes net negative annual emissions towards the end of

the century (Rogelj et al. 2018; Metz et al. 2005; IPCC 2021).

On geological time scales the Earth regulates atmospheric CO2 concentrations

by the combined action of surface rock weathering and ocean CO2 uptake (Penman

et al. 2020). High CO2 conditions lead to elevated temperatures and an intensified

hydrological cycle, which increases silicate rock weathering (Archer et al. 2009). The

subsequently dissolved alkalinity increases the ocean’s capacity for CO2 and the excess

atmospheric CO2 dissolves into the ocean, largely reacting to form (bi)carbonate ions

(Zeebe and Wolf-Gladrow 2001). Indeed the ocean’s total dissolved inorganic carbon

(DIC) exceeds that of the current atmosphere by 50-fold (Sarmiento and Gruber

2006).

This mechanism operates on a 10–100 ka time scale (Archer et al. 2009), limited

by the slow intrinsic kinetics of silicate rock dissolution and the slow introduction of

unweathered rock. Exposure of fresh igneous rocks has been linked to rapid cooling of

the Earth’s past climate (Gernon et al. 2021). Unfortunately, this natural homeostat

operates too slowly to mitigate anthropogenic climate change this century. Ocean

alkalinity enhancement (OAE) (Renforth and Henderson 2017) is a proposed approach

to accelerate this process in order to increase the ocean’s capacity for CO2 and draw

down some of the anthropogenic atmospheric CO2.

The kinetics of rock dissolution can be accelerated in a number of ways. The

simplest approach is to increase the rock’s surface area through grinding. Powdered

rocks such as olivine can then be added to the ocean and will dissolve over the course

of years to decades, adding alkalinity (Hangx and Spiers 2009; Schuiling and De Boer
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2011; Renforth 2012; Montserrat et al. 2017; Rigopoulos et al. 2018; Meysman and

Montserrat 2017). Alternatively, some rocks (e.g., CaCO3) may be preprocessed by

calcining, transforming them into more rapidly dissolving substances, such as CaO

(Kheshgi 1995). Major concerns with these approaches are the risk of CaCO3 precipi-

tation (Moras et al. 2022; Hartmann et al. 2022), which would remove alkalinity from

the ocean, and the introduction of co-contaminants into the ocean. Iron, abundant

in most olivine minerals, could inadvertently fertilize the ocean and cause significant

ecological effects (Bach et al. 2019). Silicates would likely shift the phytoplankton

species composition towards diatoms (Bach et al. 2019). The impact of heavy metals,

such as nickel (Guo et al. 2022) is likely complex (Ferderer et al. 2022) and species-

specific. Finally, changes in turbidity and large energy costs of grinding (Li and Hitch

2015) make deployment of particles <10 𝜇m impractical, while deployment of coarser

particles is limited to shallow waters, as the dissolution is much slower (Montserrat

et al. 2017). The long dissolution times also delay the beneficial effects on atmospheric

CO2 concentrations, likely by decades.

An alternative to direct addition of rock mass to the ocean are electrochemical

methods which effectively remove acidity from seawater and neutralize it using rocks

on land. Acid could be neutralized by using mine tailings and other industrial wastes

or by pumping it into underground basalt formations (Matter et al. 2009; McGrail

et al. 2006; Goldberg et al. 2008). Several variants has been proposed based on elec-

trolysis (House et al. 2007; Rau 2009; Davies et al. 2018) or bipolar electrodialysis

(Eisaman et al. 2018; de Lannoy et al. 2018; Digdaya et al. 2020), all essentially

producing either pure NaOH or a basified seawater stream, which would be returned

to the ocean to increase the pH and elicit CO2 drawdown. The disadvantage is the

significant electrical energy requirement and the fact that the produced alkalinity

is relatively dilute (∼1 mol kg−1; de Lannoy et al., 2018), exacerbating transport

costs out to sea compared to shipping powdered rock. Prior assessments of ship-

ping costs (Renforth 2012) when using dedicated fleets have focused on transport of

rock-based solid alkalinity (notably olivine), which has a high molality of alkalinity

(∼25 mol kg−1).
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Regardless of the alkalinity source, OAE methods leverage the marine carbonate

system (Renforth and Henderson 2017), a multiple equilibrium state (Zeebe and Wolf-

Gladrow 2001) described by the reaction

CO2(atm)
−−⇀↽−− CO2(aq) +H2O −−⇀↽−− H+ +HCO −

3

−−⇀↽−− 2H+ + CO 2−
3 .

(2.1)

Dissolved inorganic carbon (DIC) is the combined concentration of all carbonate

species. Addition of alkalinity (e.g., OH−) shifts the above equilibrium to the right

by consuming H+ ions, thus lowering the partial pressure of CO2 in the ocean and

driving further ocean CO2 uptake (Middelburg et al. 2020; Zeebe and Wolf-Gladrow

2001). As the sea-surface CO2 exchange is rate limiting (surface water experiences

an equilibration time scale on the order of weeks to years; Jones et al. (2014)), the

addition of alkalinity causes a local increase in pH and aragonite saturation (ΩArag)

and a decrease in 𝑝CO2, all of which could potentially affect the local ecology (Subhas

et al. 2022; Ferderer et al. 2022; Bach et al. 2019). Furthermore, increases in aragonite

saturation could lead to precipitation of calcium carbonate, which removes alkalinity

from the surface water and is counterproductive with respect to CO2 uptake (Moras

et al. 2022; Hartmann et al. 2022). A number of previous studies have used ocean

circulation models combined with a carbon cycle model to estimate the carbon uptake

potential of various hypothetical OAE scenarios (Köhler et al. 2013; González and

Ilyina 2016; Feng et al. 2017; Ilyina et al. 2013; Keller et al. 2014; Burt et al. 2021;

Tyka et al. 2022). Some of these studies investigated very high rates of alkalinity

injection to test the limits of OAE. Ilyina et al. (2013) simulated alkalinity addition on

the order of 2.8 P mol yr−1 (for an approximate uptake of 50 Gt CO2 yr−1). González

and Ilyina (2016) added enough alkalinity to remove around 44 Gt CO2 yr−1. Both

these studies found drastic changes in pH and the carbonate saturation state.

Most of these simulations consider globally uniform alkalinity injection patterns,

which is unrealistic for practical deployment and provides little insight into which

geographical locations are ideal for conducting OAE. An ideal region (for purposes
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of negative emissions) minimizes the effect of added alkalinity on the local carbonate

system and ecology, while maximizing the CO2 uptake per unit alkalinity added.

Several authors have conducted scenario-driven and locally resolved simulations.

Köhler et al. (2013) investigated finely ground olivine addition from ship tracks for a

total uptake of 3.2 Gt CO2 yr−1, simulating the distribution of alkalinity via ballast

water of commercial ships. These ship tracks span the full ocean extent from 40∘ S

to 60∘ N, although heavily weighted to the area between 20∘ and 50∘ N.

Feng et al. (2017) simulated adding olivine along global coastlines where continen-

tal shelves are shallower than 200 m. They found that to stay below aragonite sat-

uration levels of ΩArag=3.4 and ΩArag=9, coastal olivine addition can remove around

12 and 36 Gt CO2 yr−1 respectively. Some more spatially resolved studies have been

undertaken. Burt et al. (2021) tested regional alkalinity addition based on eight

hydrodynamic regimes in a 1.5∘ model, and Tyka et al. (2022) simulated alkalinity

addition at individual points in a 6∘ lat-long grid. Both studies revealed that the pH

sensitivity and the efficiency of CO2 uptake vary geographically and temporally.

Here, we also study alkalinity addition through a practical and economic lens,

focusing on electrochemical methods, which produce NaOH or other rapidly dissolv-

ing forms of alkalinity. We begin with the assumption that the optimal places for

electrochemical alkalinity production would be on the coast, with access both to sea-

water and low-cost renewable electricity. To minimize risks to coastal ecosystems and

ensure adequate spreading and quick dilution, the alkalinity would be transported

some distance offshore. This is increasingly critical for larger scale deployments to

avoid high concentrations of alkalinity. We wish to determine how far offshore and

over what area alkalinity can be added to the surface ocean while staying within

conservative biological and geochemical limits. While these issues are less relevant to

initial small-scale OAE, our goal is to examine the limits of the technology’s potential

scale. A judicious amount of OAE may also be beneficial by stabilizing or reversing

the anthropogenic acidification of the surface ocean (Albright et al. 2016; Feng et al.

2016). Specific implementations of OAE may also be subject to additional limitations

such as trace metal contamination (Guo et al. 2022; Bach et al. 2019), which we do
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not address here.

Increases in alkalinity change the activities of all forms of CO2 in the carbonate

system (Middelburg et al. 2020; Zeebe and Wolf-Gladrow 2001), many of which are

relevant to marine organisms (Riebesell and Tortell 2011). Both the direct impact

on marine species and the risk of triggering calcium carbonate precipitation must be

considered (Bach et al. 2019; Hartmann et al. 2022). Given the complexity of the

carbonate system and the variety of responses to each parameter there is no single

“correct” choice of proxy (Fassbender et al. 2021) by which to quantify the shift in

carbonate state, although the parameters are strongly correlated with each other.

Furthermore, what constitutes a safe limit for any given ocean parameter is under

debate and likely varies significantly between regions; thus, a blanket hard limit is

difficult to establish. Here we use two proxies to quantify changes in the carbonate

system: ∆pH and ΩArag.

Prior studies simulated the addition of uniform amounts of alkalinity over some de-

fined area and measured the varying response of ocean parameters. However, because

the sensitivity of these parameters varies over more than one order of magnitude, we

designed our experiment in reverse, i.e., we adjust the alkalinity addition rate in each

grid cell to result in a uniform and relatively small change of a given parameter.

We can then examine how the injection rate varies and construct maps that indicate

regions of high suitability for OAE.

Finally, to assess the effectiveness and time scale of CO2 uptake due to an OAE

deployment in a given region of interest, we can define the uptake efficiency as

𝜂CO2(𝑡) =
∆DIC(𝑡)

∆Alk
, (2.2)

where 𝑡 denotes the time since alkalinity was added and 𝜂CO2 is a unitless molar

ratio. Following the addition of some quantity ∆Alk to seawater, the ocean will

begin taking up CO2, eventually reaching a maximum (Renforth and Henderson 2017;

Tyka et al. 2022). The exact value depends on the parameters of the carbonate

system, i.e., Alk, DIC, temperature etc., with a typical range of 0.75–0.85 (Tyka et al.
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2022). However, the kinetics of this equilibration are known to vary spatially due to

differences in the gas exchange time scales and the surface residence time of CO2-

deficient water (Jones et al. 2014; Burt et al. 2021). We thus conducted simulated

experiments with short localized pulse injections, followed by tracking of the total

excess alkalinity and DIC relative to a reference simulation as done previously with

a much coarser model (Tyka et al. 2022). This gives an accurate picture of where

alkalinity from a particular injection point is advected to, how much alkalinity is lost

to the deep ocean, and how much and when CO2 uptake can be expected.

2.2 Methods

2.2.1 The model

We use the ECCO LLC270 physical fields (Zhang et al. 2018) to simulate the transport

of alkalinity by currents and model alkalinity addition in near-coast areas globally. We

inject alkalinity to the simulation in strips along all global coastlines, 37 km wide and

larger. The ECCO fields is an ocean state estimate based on the MIT General Circu-

lation Model (MITgcm) (Marshall et al. 1997) that also integrates all available ocean

data since the onset of satellite altimetry in 1992. ECCO uses the adjoint method to

iteratively adjust the initial conditions, boundary conditions, forcing fields, and mix-

ing parameters to minimize the model-data errors (Wunsch et al. 2009; Wunsch and

Heimbach 2013). This produces a three-dimensional continuous ocean state estimate

that agrees well with observational data. We use the LLC270 configuration with a

1/3∘ horizontal resolution (Zhang et al. 2018). All input and forcing files needed to

reproduce the ECCO state estimates and the source code are freely available online,

and we use them to reproduce the LLC270 flow fields. The LLC270 configuration uses

a lat-long-cap (LLC) horizontal grid, which uses five faces to cover the globe. The

horizontal resolution ranges from 7.3 km at high latitudes to 36.6 km at low latitudes,

and has 50 vertical layers with the grid thickness ranging from 10 m near the ocean

surface to 458 m at the bottom (Zhang et al. 2018). We use the iteration-42 state
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estimate described in Carroll et al. (2020), which spans the years 1992–2017.

To represent the ocean carbonate system we used the gchem and DIC packages

within MITgcm. The ocean carbon model was based on Dutkiewicz et al. (2005) and

uses four biogeochemical tracers (DIC, alkalinity, phosphate, and dissolved organic

phosphorus) to simulate the carbonate system. In this model, DIC is advected and

mixed by the physical flow fields from the MITgcm, and the sources and sinks of DIC

are: CO2 flux between the ocean and atmosphere, freshwater flux, biological produc-

tion, and the formation of calcium carbonate shells. The biogeochemical tracers were

initialized with contemporary data from GLODAPv2 mapped climatologies (Lauvset

et al. 2016; Olsen et al. 2017) where possible, or using data from Dutkiewicz et al.

(2005) and were allowed to relax locally by running 100 years of forward simulation

(looping the ECCO forcing fields). Atmospheric CO2 concentrations were held con-

stant at 415 𝜇atm, rather than trying to anticipate future emission scenarios. The

surface carbonate tracers were found to stabilize during this time.

As we are not simulating a full Earth system, our model does not account for

feedbacks of other carbon sinks which reduce the impact of moving CO2 from the

atmosphere to the ocean (Keller et al. 2018a). Wind speeds, used to calculate the

gas exchange, are imported from the LLC270 forcing data and the air-sea exchange

of CO2 is parameterized with a uniform gas transfer coefficient (Wanninkhof 1992).

To simulate ocean OAE, we forced the simulation by adding pure alkalinity to the

surface ocean in specified locations to the top grid cell (10 m depth) and at a pa-

rameterized rate; this assumes that alkalinity is of an effectively instantly dissolving

nature, such as an NaOH solution. This avoids complicating factors arising from

slower dissolving materials such as fine olivine powder, for which dissolution rates

vary with ocean conditions and may sink out of the surface layers before complete

dissolution (Fakhraee et al. 2022). We focused on alkalinity addition in coastal bands

following shorelines because that is economically most viable and accessible for ship-

ping or pipelines. Feedbacks of elevated alkalinity on the rate of surface calcification

are also not explicitly modeled.

Six coastal strips are examined with widths of approximately 37, 74, 111, 185,
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296 and 592 km, although they vary slightly due to the varying grid cell sizes in the

LLC270 grid. Feng et al. (2017) used a coarser 3.6∘ longitude by 1.8∘ latitude model,

and their injection pattern roughly corresponds to our 296 km coastal strip. The

much finer LLC model allows us to resolve coastal features in greater detail and to

test thinner injection strips. We also examined injection in discrete locations spaced

200 or 400 km apart along the coastline, in circular patches ∼120 km wide.

All runs presented in this paper use the same approach: First a reference simula-

tion is run (spanning 20 ECCO years 1994–2014). Then a second run is conducted

with the same starting conditions, with an alkalinity forcing added, which perturbs

the system in some way. We then analyze the difference in the carbonate systems

(∆pH, ∆Ω, ∆DIC, etc.) between these two runs. As the carbonate model does not

influence the flow field, there is no divergence in the flow fields over the 20 simulation

years and the 2 trajectories are directly comparable. These simulations are run on

a small MPI cluster (13 machines, 59 processes each) on Google Cloud Engine, and

take about 6 h of wall time per simulation year.

2.2.2 pH and Omega limits

The carbonate chemistry in different regions varies in its sensitivity to alkalinity in-

jection, owing to local differences in ocean circulation, gas exchange and carbonate

chemistry. The goal of our experiments is to determine the maximal alkalinity ad-

dition rate which can be sustained at any given grid point and limits the change in

one of two surface parameters, pH and the aragonite saturation ΩArag to some chosen

value.

Here we chose target constraints ∆pHtgt=0.1 or ∆Ωtgt=0.5. These values are

somewhat arbitrary and serve simply to calculate the relative sensitivity of differ-

ent regions. However, as an intuitive point of reference, the already incurred an-

thropogenic surface acidification since preindustrial times (Doney et al. 2009) is

∆pH≈ −0.1. Likewise a change of ∆ΩArag=+0.5 is unlikely to trigger carbonate

precipitation according to Moras et al. (2022) who established an ΩArag threshold of

5.
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An alternative approach would have been to set absolute thresholds for pH and/or

Omega; however, we did not pursue this for the following reasons. For the estimation

of biological impact a relative change to current conditions seems most appropriate as

the local ecosystem is adapted to the local conditions and many biologically relevant

stressors change proportionally to the relative concentration change. For example, the

energy expenditure of an organism to maintain its intracellular pH is approximately

proportional to the logarithm of the proton concentration difference. For purposes

of estimating the precipitation limit an absolute threshold would indeed be more

appropriate. However, in polar latitudes where ΩArag is currently low, the change in

alkalinity required to reach the limit (e.g., ΩArag>5, Moras et al. (2022)) would be so

large that it would no longer represent a realistic scenario, easily exceed the above

relative pH limits and likely exceed the bounds of the simulation’s predictive domain.

We note that our choice of a relative Omega constraint means that we obtain a lower

bound on the true OAE limit, with respect to Omega.

In practice, which limits are acceptable is subject to debate and likely different

in different locations. We do not attempt to anticipate the acceptable limits here,

focusing merely on the relative capacity of different ocean regions with respect to

these ocean parameters. Our approach is as follows: each surface grid point that is

part of the coastal injection strip is given a particular baseline injection rate 𝑟 (in

mol m−2 s−1). At every time step and for every grid point, the local (in time and

space) ∆pH is calculated using the carbonate model and a reference value obtained

from an unperturbed reference simulation (∆pH = pH - pHref). If this value is lower

than ∆pHtgt, then alkalinity is added according to the baseline rate. If not, then

addition is skipped for this time step.

This mechanism is insufficient to ensure the pH does not exceed the maximal

value, as the change in pH is determined not only by the local alkalinity addition, but

also by advection of alkalinity from neighboring cells and seasonally varying biological

activity. We thus iteratively adjusted the baseline rate for each grid cell to empirically

determine a rate which gives rise to approximately the desired ∆pH in the following

way.
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First a pilot simulation was run where the baseline rate was set uniformly to an

extreme value of r=400 mol m−2 s−1, (higher than any region can accommodate).

We ran this simulation for 3 years and recorded the observed amount of addition

at each grid cell (generally much lower than the baseline as the above algorithm

prevents excessive addition). Second, we reran the simulation using a new, position-

dependent baseline rate calculated from the amounts actually added from the pilot

simulation using a linear extrapolation to our desired pH maximum. We ran this

second simulation for 8 years. We found that the observed ∆pH was now generally

very close to the desired ∆pHtgt. However, some regions still exceeded the target value

while others undershot. We thus performed a third simulation where we adjusted the

addition rate at any grid point inversely proportional to the observed pH deviation,

yielding a final third simulation which was allowed to run for 20 years using the

ECCO forcing fields from 1995 to 2014. We found that this procedure yielded a

relatively narrow distribution of ∆pH or ∆ΩArag for all grid points in the injection

strip, although some variability remained (Fig. 2-9 in the Supplement). A separate

iterative optimization was performed for every injection pattern. Grid points outside

of the injection strip showed much smaller changes in pH and never exceeded the

target ∆pH. The same procedure was used in a separate set of experiments for ∆ΩArag.

Once the rate of OAE is stable and acceptable, we can measure how much al-

kalinity is being added at each grid point. Note that because of the considerable

interdependence between nearby grid points there is no one unique injection pattern

that satisfies the ∆pH or ∆ΩArag condition; however, multiple independent optimiza-

tion runs started at different ECCO years yield injection patterns that match very

closely.

2.2.3 Pulse additions

When alkalinity is added to the surface ocean it lowers the partial pressure of CO2

(𝑝CO2) and thus increases the rate at which CO2 dissolves in the ocean surface. The

effectiveness 𝜂CO2 of this uptake is determined by a number of factors which vary

significantly by location. The time scale of gas exchange 𝜏CO2 is approximately 3–9
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months and varies by location (Jones et al. 2014), while the residence time 𝜏 res of

water parcels in the mixed layer varies over shorter times between 2 and 20 weeks.

Thus the resultant equilibration efficiency ratio 𝜏 res/𝜏CO2 was found to be signifi-

cantly below 1.0 in 95 % of ocean locations (Jones et al. 2014). However, CO2-deficient

water parcels initially lost from the mixed layer can remix into the mixed layer at

some later time and thus drive further equilibration elsewhere and over longer time

scales. This longer term effect was not explicitly modeled in previous work (Jones

et al. 2014) and results in a complex equilibration curve which is not well captured

by a single exponential function. As the kinetics of this longer term equilibration

depend on the deep transport and mixing of the lost alkalinity, it has to be simulated

explicitly.

We extend the work of Jones et al. (2014) by simulating pulse injections of alkalin-

ity in a variety of locations using the ECCO flow fields. These simulations explicitly

include all the relevant aspects together (gas exchange, Revelle factor, surface trans-

port, mixed layer-depth, residence time and remixing), by measuring the actual excess

CO2 uptake of the ocean relative to the unperturbed reference simulation. However,

because the alkalinity is also distributed horizontally over great distances and mixes

from different origins, it is impossible to disambiguate the CO2 uptake time scale

of different injection points from a single simulation. One solution to this problem

is to use a Lagrangian approach (van Sebille et al. 2018) which allows the tracking

of stochastic particles. Here we chose a simpler approach. For a select number of

coastal locations we run a separate simulation and inject a 1-month pulse of alka-

linity. Following the pulse we monitor the total excess DIC in the ocean relative to

a reference simulation, the distribution of alkalinity across the depth layers, and the

𝑝CO2 deficit at the surface over time. Ideally the length of the pulse would be a single

time step; however, this would either necessitate an extreme addition rate or a tiny

total quantity of added alkalinity, which would lead to a poor signal to noise ratio dur-

ing analysis. The choice of pulse length thus represents a compromise, as this length

is still much shorter than the overall relaxation time. Ideally such a pulse injection

experiment could be conducted for every grid point (as was done with a coarse model
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in Tyka et al., 2022) and at different times of the year. However, because each pulse

requires a whole separate simulation, this exceeded our computation capacity with

the high-resolution ECCO model. Thus we chose 17 individual locations of interest

along most major coastlines with pulses occurring in January.

2.2.4 Alkalinity injection from ships

In addition to the steady-state perturbation of ocean parameters over large areas of

OAE deployment, it is critical to examine the short-term impacts that arise right

at the injection site, which will temporarily take the local carbonate system into an

extremely alkaline regime. This is unlikely to be a concern for gradually dissolving

alkalinity such as ground olivine (Hangx and Spiers 2009; Schuiling and De Boer

2011), but highly relevant for rapidly dissolving alkalinity such as NaOH solution or

other solubilized alkaline media.

Of interest is the dilution speed of the added alkalinity (we assume here a solution

of 1 M NaOH) against the time scale at which homogeneous nucleation of aragonite

is triggered and needs to be avoided. The most natural approach, used also in waste

disposal, would be to inject directly into the turbulent wake of the ship to mix the

discharge with seawater as rapidly as possible (Renforth and Henderson 2017). The

dilution kinetics have been studied and modeled in previous work (Chou 1996; IMCO

1975) and large discrepancies exist between the published models. The IMCO model

uses the following empirical form for the unitless dilution factor as function of time 𝑡:

𝐷(𝑡) =
𝑐

𝑄
𝑈1.4𝐿1.6𝑡0.4, (2.3)

where 𝑡 is time (seconds), 𝑄 is the release rate (m3 s−1), 𝑈 is the speed of the ship

(m s−1), and 𝐿 is the waterline length (m). 𝐶 is an empirical constant, set to 0.003

for release from a single orifice and 0.0045 for release from multiple ones. Intuitively,

larger speeds and longer ships have more turbulent wakes, producing faster dilution.

Chou (1996) used the following similar model which instead of waterline length uses

the width of the ship, 𝐵, in units of meters, to account for the ship size.
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𝐷(𝑡) =
0.2108

𝑄
𝑈1.552𝐵1.448𝑡0.552. (2.4)

Chou’s formula gives much faster dilution rates and was verified against field

testing data. Other work (Lewis 1985; Byrne et al. 1988; Lewis and Riddle 1989)

used even higher exponents on the time 𝑡 so we take the IMCO formula to be an

upper limit although in general no universally applicable law can be expected as the

dispersion time scale will inevitably depend on local conditions. For a given starting

concentration 𝐶0 of the alkaline effluent (e.g., 1 mol L−1 NaOH) we can calculate the

resultant alkalinity by considering the dilution with seawater with alkalinity Alk0

Alk(𝑡) =
1

𝐷(𝑡)
𝐶0 +

(︃
1− 1

𝐷(𝑡)

)︃
Alk0. (2.5)

We can then determine the pH(𝑡) and the carbonate saturation state Ω(t) by

solving the carbonate system at any given Alk(𝑡). We used PyCO2SYS (Humphreys

et al. 2020) to solve the carbonate system numerically, assuming PyCO2SYS default

values and Alk0 = 2300 𝜇mol kg−1 and DIC = 2050 𝜇mol kg−1. These analytical

models are valid only on time scales smaller than 1 h, after which dilution kinetics

are driven by the local background turbulence rather than the immediate influence

of the wake turbulence. Thus longer scale dilution effects will vary substantially from

location to location. As the time scale considered here is much shorter than the

typical CO2 gas exchange time scale, we do not explicitly model CO2 uptake during

this initial dilution.

2.2.5 Estimation of transport costs

Alkalinity prepared on land must be transported out to sea, which adds to the total

cost of the achieved negative emissions (in USD per tonne CO2). While at very small

scale it could be released right at the coast, for larger overall OAE deployment the

alkalinity will need to be spread over greater areas (to avoid excessive local pH or

Omega changes) which increases the cost for every additional unit of alkalinity added.
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Having obtained maps of the allowable rate of OAE in any given area, we can estimate

the transport costs for each of our simulated scenarios. Large-scale maritime shipping

costs are currently around USD 0.0016–0.004 per tonne per kilometer (Renforth 2012).

For each grid point where alkalinity is injected, we calculate the distance 𝐷 to the

nearest coast, and take double that to be the minimum round trip distance for a ship

to travel. Realistically, a ship will have to travel farther than 𝐷 since it needs to

go to the nearest port or NaOH factory, so this is the lower bound on the transport

distance. This allows us to calculate the lower bound of the shipping cost per tCO2

for each grid point. The scenario model provides the alkalinity injection rate for each

grid point, and assuming an eventual uptake efficiency 𝜂CO2 = 0.8 we can obtain the

total shipping cost for every grid point. Summing the total cost over all grid points

in which injection occurs and dividing by the total expected global CO2 uptake yields

a lower bound of the average effective global transport cost per tonne CO2.

2.3 Results and discussion

2.3.1 Injection capacity

In all our simulations the alkalinity flux in the injection grid cells was iteratively ad-

justed to elicit a change in pH or the change in Omega (although not simultaneously)

to a value of either ∆pH = +0.1 or ∆ΩArag= +0.5, respectively. Due to the correla-

tion between neighboring grid cells, seasonal and year-to-year changes in currents and

biotic activity, these constraints are not perfectly satisfied but we were able to confine

them to a narrow range around the desired value (Fig. 2-9). The injection rate as

well as ∆pH and ∆ΩArag, stabilize within the first 5–6 years of the simulation and

remain stable for the remainder of the simulation (Fig. 2-9), indicating that a steady

state is reached where the alkalinity addition rate is matched by outflowing alkalinity

into open ocean areas and by neutralization by atmospheric CO2. Note that while

the time-averaged ∆pH is close to 0.1, there is significant temporal variability that

leads to ∆pH slightly exceeding 0.1 at some parts of the year (Fig. 2-9).
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Figure 2-1: Shown is a coastal injection in a strip 296 km wide, subject to ∆pHtgt=0.1.
All time-averages ran over 5–20 years. (a) Averaged pH change compared to a ref-
erence simulation with no added alkalinity. (b) Average alkalinity flux at each grid
point from the coast. (c, d) Injection flux for two example regions. Annually averaged
surface currents are overlaid as a vector field.

As expected, ∆pH or ∆ΩArag outside the injection grid cells is much lower and

never exceeds the target value. However, the effect on adjacent areas outside of the

injection grid points is variable and depends on the pattern of ocean currents that

sweep alkalinity away from injection areas. For instance, western boundary currents

carry the coastal excess alkalinity far out into the open ocean, so we see elevated

changes in the North Atlantic and Indian oceans, even outside the injection areas.

For each injection pattern and chosen limit we can now obtain a global map of

steady-state alkalinity flux (mol m−2 yr−1), which shows the variability of capacity

for OAE (Fig. 2-1b, c and d). We note substantial variability on multiple scales.

Firstly on a large scale, some coastal areas have a fundamentally greater capacity for

distributing and neutralizing alkalinity flux than others (see also Fig. 2-2b). Large

capacities are found around islands which sit in or near ocean currents, as those

rapidly sweep the alkalinity away from near-coast areas. Examples include Kerguelen,

Easter Island and Hawaii. Continental coasts which exhibit large capacities are found

around South and East Africa, off the coast of Peru and Brazil, Southeast Australia

and the west coast of Japan. Finally, an area of very large tolerance for alkalinity

addition is found in the northern Atlantic. However, as will be shown later, this is
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Figure 2-2: (a) Total CO2 flux (Gt CO2 yr−1), subject to ∆pHtgt=0.1, broken down
into flux through the injection area and outside of the injection area. (b) Dependence
of the averaged injection flux (mol m−2 yr−1) on the width of the coastal injection
strip for different coastal regions and strip widths. The black dashed line averages all
coastal regions.

due to downwelling and deep water formation, which is highly undesirable for OAE

as the alkalinity cannot efficiently equilibrate with the atmosphere before being lost.

Conversely inland seas and partially enclosed seas exhibit the smallest capacity for

OAE, notably the Red Sea, the Mediterranean and the Baltic Sea. An interesting

counterexample is the Gulf of Mexico and the Caribbean Sea which, owing to the

traversing Gulf Stream, have significant capacity for OAE. We found no correlation

between background pH and OAE rate, as the influence of local ventilation due to

currents dominates the capacity for alkalinity addition.

As expected, the large scale patterns obtained by limiting ∆pH = 0.1 or ∆ΩArag=0.5

are very similar (Fig. 2-10) up to a linear factor and highly correlated on a per grid

cell basis. This is consistent with the observation that OAE capacity is primarily

influenced by local currents. However, we note that the fundamental sensitivities

of pH and ΩArag with respect to Alk change quite differently from the poles to the

equator. In particular, 𝜕pH/𝜕Alk decreases from ∼ 2.6× 103 L mol−1 at the poles to

∼ 1.0×103 L mol−1 at the equator, while 𝜕Ω/𝜕Alk increases from ∼ 7.6×103 L mol−1

at the poles to ∼ 11×103 L mol−1 at the equator (computed from GLODAPv2, Lau-

vset et al., 2016; Olsen et al., 2017 data and PyCO2SYS; Humphreys et al., 2020;
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Lewis and Wallace, 1998). Furthermore, from the perspective of preventing precip-

itation due to excessive ΩArag, the available headroom is much smaller at tropical

latitudes, where ΩArag is already close to 4, than near the poles where ΩArag is as low

as 1–2 (Lauvset et al. 2016; Olsen et al. 2017). Thus, as our relative ∆ΩArag limit

was set to 0.5, the OAE limits obtained here should be considered a lower bound

with respect to calcite precipitation, i.e., polar regions could tolerate a much larger

addition rate. For pH the actual ecologically tolerable limits will vary from coast to

coast, and we do not attempt to anticipate them here. We note, however, that for our

examined constraints (both of which are very conservative) a significant amount of

negative emissions can be obtained even in very narrow coastal strips as the transport

out to open sea is very efficient. This observation is consistent with prior work by

Feng et al. (2017).

On a fine scale we find that the sustainable injection flux varies over 2–3 orders of

magnitude between nearby grid points (Fig. 2-9) with a distribution that is approxi-

mately log-normal. The variance is even larger for thin injection strips (Fig. 2-9) and

very large fluxes can be sustained in some locations if the net transport of alkalinity

out of the strip is high enough. Depending on the prevailing currents, the highest

injection rate can be found both on the outside and inside of the injection strip.

For all regions we observed that while widening the injection strip increases the

total allowable rate of alkalinity injection, the increase is sublinear (Fig. 2-2a). Every

additional unit of alkalinity added needs to be transported further offshore and the

average injection rate decreases per unit area. This is consistent with the view that

the majority of the neutralization of the added alkalinity by invading CO2 occurs

outside the injection strip and the local pH is primarily determined by the rate of

transport of alkalinity into other areas (Burt et al. 2021). This is confirmed by

integrating the total CO2 flux over the injection strip and over the rest of the ocean

surface, relative to the reference simulation. Figure 2-2a shows that especially for

thin coastal injection strips, direct gas exchange through the strip surface accounts

for only a minor component of the induced CO2 uptake and the majority occurs

outside of the injection areas. As the strip widens, however, this fraction significantly
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Figure 2-3: Injection flux (mol m−2 yr−1) shown for different strip widths in 3 different
regions (from top to bottom: Japan, East Africa and Northwest Australia). The inset
text indicates the total alkalinity added per year in the shown area.

increases. Especially in regions with weak transport we observe that often a larger

quantity of alkalinity can be added right at the border of the strip than in the middle,

as alkalinity can dilute to bordering areas that are not directly receiving alkalinity

(Fig. 2-3). Indeed, the largest alkalinity fluxes observed occur when the strip widths

are very thin (Fig. 2-9). The consequence is that any particular coastal region can

increase its capacity for injection by going further out to sea, but that there are

diminishing returns of doing so, i.e., the increase in capacity is sublinear with width.

The influence of widening the injection area is also shown in detail for three regions

in Fig. 2-3 and a larger number of regional details are included in the Supplement

in Fig. 2-12. Widening strips allows more alkalinity to be added overall. However,

saturation of near-coast areas occurs in most regions (especially evident in Northwest
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Figure 2-4: Alkalinity enhancement in three different patterns, exemplified at the west
coast of South America: (a) Injection in a contiguous strip. (b) Injection in 200 km
separated patches. (c) Injection in 400 km separated patches. The total globally
area-integrated OAE rate for the three injection patterns was (a) 336 Tmol yr−1, (b)
312 Tmol yr−1 and (c) 233 Tmol yr−1, respectively. The sub panels show (i) time
averaged pH change, (ii) alkalinity flux, (iii) distribution of alkalinity flux (globally).

Australia). The largest injection flux is often found directly at the strip boundary,

owing to easy diffusion out to open sea. However, it is not always the case that

the highest injection flux occurs at the strip edge, as seen in the Japan and East

Africa examples. These findings illustrate the highly non-local nature of the injection

capacity.

In general we find that the sensitivity of pH and ΩArag at any given grid point

is highly dependent on the surrounding pattern of injection. We conducted two ad-

ditional experiments in which rather than a contiguous strip, injection occurred at

discrete points placed either 200 or 400 km apart. At 200 km apart we observed much

higher injection fluxes in each injection patch, but the total global injection flux barely

changed (Fig. 2-4). Placing injection patches 400 km apart instead of 200 km apart

did not further increase the sustainable flux in each injection patch, and reduced the

overall injection capacity by 25%. This suggests that at 200 km there is still significant

cross-correlation between neighboring patches, which is apparent when looking at the
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pH changes observed: the pH impact bleeds into neighboring patches (Fig. 2-4b).

At 400 km apart, however, there is much less interference between adjacent patches

and the injection limits are simply dominated by local current patterns (Fig. 2-4c).

These observations are consistent with prior work (Jones et al. 2012) which found a

global median 𝑝CO2 autocorrelation length of about 400 km. Thus in order to maxi-

mize any particular coastline’s injection potential, injection areas should be placed at

most 200–400 km apart; however, the exact optima will depend on the local current

patterns. The location of ports, infrastructure, access to electricity and/or alkaline

minerals will dictate the choice of locations. The correlation between neighboring

injection locations has ramifications for the planning, monitoring and governance of

different OAE projects, as they will affect each other in downstream coastal areas.

For monitoring and verification purposes it will be impossible to disambiguate CO2

drawdown caused by different OAE projects by measurement alone. Any plans to add

alkalinity to the ocean will need to be simulated specifically, ideally with regionally

optimized models, and take into account already occurring OAE projects nearby.

2.3.2 CO2 uptake time scales

To measure localized CO2 uptake time scales, we conducted a total of 17 pulse in-

jections (as described in the methods section), placed near all major coastlines. We

generally chose locations previously determined as areas of high alkalinity tolerance.

Firstly, we observed a very large variety of CO2 uptake time scales (Fig. 2-5) both in

the short term (after 1 year) and in the medium term (after 10 years). After 1 year

the molar uptake fraction 𝜂CO2 = ∆DIC/∆Alk varied between 0.2 and 0.85 and after

10 years most locations resulted in an uptake fraction of 0.65–0.80 consistent with

previous work (Tyka et al. 2022; Burt et al. 2021).

A typical behavior is observed, for example, when releasing alkalinity at the north-

ern coast of Brazil (Fig. 2-6a). Here the alkalinity remains long enough at the surface

to realize its full CO2 uptake potential within 2—3 years. A number of other tested

locations follow this general pattern and are efficient for OAE deployment (Fig. 2-5a).

Here the equilibration follows roughly a single exponential relaxation.
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Figure 2-5: CO2 uptake relative to alkalinity addition (molar ratio
𝜂CO2=∆DIC/∆Alk) following pulse additions at 17 different locations. (a) Lo-
cations which equilibrate fast and reach close to the theoretical maximum of CO2

uptake (∼0.8). (b) Locations which equilibrate fast but reach a lower plateau of
relative CO2 absorption (0.6–0.8) with slow further progression. (c) Locations with
slow equilibration or significant loss of alkalinity to the deep. Note that in some cases
despite the slower initial equilibration high uptake ratios can be eventually achieved.

Another set of locations appear to lose a significant amount of alkalinity to deeper

layers before atmospheric equilibration is achieved (Fig. 2-5b, c). For example, injec-

tion off the coast of Japan resulted in slow initial uptake as a portion of the alkalinity

is quickly subducted (Fig. 2-6b). However, in the following decade remixing with

surface waters gradually returns this alkalinity back towards the surface resulting in

slow but steady CO2 uptake (Fig. 2-6b). Other examples of this delayed CO2 equili-

bration are shown in Fig. 2-5b. These locations exhibit a short mixed layer residence

time and have a poor equilibration efficiency (Jones et al. 2014), but equilibration is

eventually achieved in the following decades. Changes in surface 𝑝CO2 and alkalin-

ity will also potentially affect biological CO2 uptake and calcification rates; however,

these dependencies are not captured by the carbonate model used here (Dutkiewicz

et al. 2005) and will need to be examined by future studies.

Finally, some extreme examples of poor long-term equilibration efficiency are

found in areas of deep water formation, such as the North Atlantic. Here a CO2

uptake ratio of just over 0.4 is achieved and even after 20 years very little further

progress is made (Fig. 2-6c). Around half of the added alkalinity is subducted very

deep and will likely remain out of contact with the atmosphere until the global over-
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Figure 2-6: Pulse additions of alkalinity in 3 representative locations: (a) Brazil, (b)
Japan, (c) Iceland. (i) Excess quantity of CO2 absorbed (relative to the reference sim-
ulation) over time following a 1 month pulse injection at various near coast locations,
expressed as a molar fraction of the amount of alkalinity added (𝜂CO2). A significant
variation of uptake time scales is observed, depending on the speed at which excess
alkalinity is removed from surface layers, both in the short term and in the long term.
(ii–iv) Spatial detail of surface 𝑝CO2 deficit and depth residence of excess alkalinity
for the same 3 locations shown in (i). The initial injection location is indicated by a
black area. The surface 𝑝CO2 deficit is plotted over time (note the log scale of the
color map), indicating areas which are absorbing extra CO2 (or emitting less CO2)
compared to the reference simulation. Below, the relative excess alkalinity is plotted
against the depth of the water column (averaged over all lat/long grid points for each
depth). Further locations are shown in detail in Fig. S5.
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turning circulation returns these waters to the surface, on the time scale of many

hundreds of years. We did not examine the dependence of the time of year (all of

our pulses occurred in January) nor were we able to conduct an exhaustive set of

locations as was done previously with a coarser global circulation model (Tyka et al.

2022). We note that for all cases the alkalinity-induced CO2 deficit spreads over a

very large area within 1 year and a significant fraction of the CO2 uptake occurs after

the deficits have diluted to the sub-𝜇atm range. This makes direct monitoring and

verification of OAE extremely challenging and will likely need to rely on modeling

and indirect experimental verification.

2.3.3 Alkalinity injection from ships

Other than potential ecological impacts on marine life intersecting the caustic release

wake of an OAE ship, one concern is that a short ΩArag spike could induce precipitation

of CaCO3 (Renforth 2012). Once nucleated, the CaCO3 particles could continue to

grow, even when the pH has returned to normal ocean levels (≈8.1) because the ocean

is supersaturated with respect to calcite (ΩCalc≈2.5–6) and aragonite (ΩArag≈1.5–4)

(Lauvset et al. 2016; Olsen et al. 2017). While the nucleation of CaCO3 is strongly

inhibited by the presence of magnesium in seawater (Sun et al. 2015; Pan et al. 2021),

the growth of existing crystals may not be (Moras et al. 2022; Hartmann et al. 2022).

Only once the CaCO3 particle has reached a size and density that causes it to sink

would it stop removing alkalinity from the surface ocean. Thus, depending on the

number of particles nucleated, the alkalinity removed from the surface ocean can be

larger than the alkalinity added (Moras et al. 2022; Hartmann et al. 2022; Fuhr et al.

2022).

As the immediate dilution dynamics of alkalinity injected into the wake of a ship

are far below the resolution of the ECCO LLC270 global circulation model, we exam-

ine this process analytically, as described in the methods section. The relevant time

scales are compared in Fig. 2-7. The predicted pH and ΩArag as a function of time

are shown in blue, based on the dilution formulas given by IMCO (1975) and Chou

(1996).
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Figure 2-7: The expected time evolution of pH (left scale) and ΩArag (right scale) due
to dilution for alkalinity injection into a ship wake. Here we assume a large tanker
(275 m long, 50 m wide, traveling at 6 m s−1) releasing 1.0 M NaOH at a rate of
5 m3 s−1. Ships of this size have a capacity of 100–200 kt of cargo which would
take 6–12 h to discharge. Two previously published dilution models are shown in
blue with a large variance apparent. For comparison, the time scales of homogeneous
nucleation are also shown (yellow, brown and black). The dashed and dotted lines
indicate the estimated Ω limits for precipitation. Despite the substantial uncertainty
in the existing models, dilution can proceed at least 1–2 orders of magnitude faster
than precipitation is expected to occur.
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Also shown are the homogeneous nucleation times of CaCO3 for comparison. Sev-

eral studies (Pokrovsky 1994, 1998) have measured the homogeneous nucleation of

CaCO3 in seawater at different saturation states down to ΩArag=9. Three of these

models are plotted in shades of orange and black in Fig. 2-7. Theoretical studies (Sun

et al., 2015) suggest that for Mg : Ca ratios of 5.2, as found in seawater, no nucleation

of aragonite occurs at all below ΩCalc=18 (equivalent to ΩArag≈12), due to inhibition

by magnesium. This is consistent with Morse and He (1993); however, time scales

only up to a few hours were examined. Moras et al. (2022) suggested a safe limit of

ΩArag=5 based on alkalinity addition using CaO. Figure 7 shows that ship-wake dilu-

tion proceeds at least one order of magnitude faster than the homogeneous nucleation

time; thus, we can expect that CaCO3 particles will not be induced to nucleate.

At the immediate injection site where the pH exceeds ∼ 9.5–10.0, the tempo-

rary precipitation of Mg(OH)2 is expected, which redissolves readily upon dilution

(Pokrovsky and Savenko 1995) and buffers the pH against further increase (not ac-

counted for in Fig. 2-7). The temporary reduction in the Mg : Ca ratio could make

CaCO3 nucleation more favorable, but the time spent in this state (<1 min) is likely

still well below the required nucleation time.

2.3.4 Transport costs

Alkalinity prepared on land must be transported out to sea, which incurs costs. Hav-

ing obtained maps of the sustainable rate of OAE in any given area, we can estimate

the transport costs for each of our simulated scenarios as described in the methods

section. Furthermore, the quantity of alkalinity per tonne depends on the molality

of the material moved. For rock-based methods (Hangx and Spiers 2009; Schuil-

ing and De Boer 2011; Renforth 2012; Montserrat et al. 2017; Rigopoulos et al. 2018;

Meysman and Montserrat 2017), the molality of solid alkaline materials such as olivine

is ∼ 25 mol kg−1. For electrochemical alkalinity methods (House et al. 2007; Rau 2009;

Davies et al. 2018; Eisaman et al. 2018; de Lannoy et al. 2018; Digdaya et al. 2020)

that produce alkaline liquids, it will be closer to 1 mol kg−1, depending on the indus-

trial processes used and effort spent concentrating the alkaline solution. Figure 2-8
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Figure 2-8: Total carbon uptake potential for a variable alkalinity addition strategy
that results in a maximal pH change of 0.1 (see Fig. 1 for an example). Carbon
uptake is estimated at 𝜂CO2=0.8. The strip widths necessary are indicated for each
point. Shading denotes the shipping cost uncertainty, which ranges from USD 0.0016
to 0.004 per tonne per kilometer (Renforth 2012).

shows how the transportation costs are influenced by the total desired negative emis-

sions (larger scale requires transport further offshore). For concentrated alkalinity

(such as ground rocks) transport costs are not a major contributor to cost, consis-

tent with prior work (Renforth 2012). However, for dilute alkalinity, such as that

obtained from electrochemical processes, transportation could become a significant

contributor to the overall cost. A potential low-cost solution could be, for example,

the near-coast precipitation (Thorsen et al. 2000; Davies et al. 2018; Sano et al. 2018)

of Mg(OH)2 with subsequent redissolution of the solid Mg(OH)2 after transport out

to sea. However, economic tradeoffs between the cost of concentrating the alkalinity

and the cost of transportation will need to be made.

2.4 Conclusions

In this paper we examined the suitability and effectiveness of near-coast regions of

the ocean for alkalinity enhancement (OAE). We conducted a series of high resolution
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(0.3∘) global circulation simulations in which alkalinity was added to coastal strips

of varying width under the constraint of limited ∆pH or ∆ΩArag. We found that the

resultant steady-state rate at which alkalinity can be added at any given location ex-

hibits complex patterns and non-local dependencies which vary from region to region.

The allowable injection rate is highly dependent on the surrounding injection pattern

and varies over time, responding to external seasonal factors which are not always

predictable. This makes it difficult to prevent occasional short spiking beyond the

specified limit, thus potentially requiring that the limit is set conservatively in prac-

tice. These difficulties are also expected to arise in practice and have repercussions

on how such OAE would be performed in reality and how it would be monitored, re-

ported and verified (MRV). The non-local nature of the pH effect also likely requires

different adjacent countries to coordinate their OAE efforts.

We found that even within the relatively conservative constraints set, most re-

gional stretches of coastline are able to accommodate on the order of 10s to 100s

of megatonnes of negative emissions, with areas with access to fast currents being

able to accommodate more, such as East Africa or the coast of Peru. Globally we

conclude that near-coastal OAE has the potential to scale to a few gigatonnes of CO2

drawdown, if the effort is spread over the majority of available coastlines. However,

given that many other factors will determine suitable locations (such as availability of

appropriate alkaline minerals, low-cost energy and geopolitical suitability) the global

potential may be lower in practice. We also examined the cost of transport of alka-

linity, which increases with global deployment size as the alkaline material needs to

be spread over greater distances from the shore. For alkalinity schemes based on dry

minerals the transport costs remain minor, but for electrochemical methods, which

produce more dilute alkalinity, this may present limits to scaling.

We also examined the effectiveness and time scale of alkalinity enhancement on

uptake of CO2, through pulsed injections and subsequent tracking of surface water

equilibration. Depending on the location, we find a complex set of equilibration

kinetics. Most locations reach a plateau of 0.6–0.8 mol CO2 per mol of alkalinity

after 3–4 years, after which there is little further CO2 uptake. The plateau efficiency
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depends on the amount of alkalinity lost to the deep ocean which will not equilibrate

with the atmosphere until it returns to the surface, on the time scale of 100–500

years or more. The most ideal locations, reaching close to the theoretical maximum

of ≈0.8, include north Madagascar, Brazil, Peru, and locations close to the Southern

Ocean, such as Tasmania, Kerguelen and Patagonia, where the gas exchange appears

to occur faster than the surface residence time. The variation of the achievable CO2

drawdown per unit alkalinity on time scales relevant to the climate change crisis and

the speed at which equilibration is reached poses further difficulty for verification of

CDR credits.

Further study to determine these uptake efficiencies, at a finer location sample

resolution and ideally with model ensembles, are needed for optimal placement of

OAE deployments. While our results give an overall picture and are indicative of

the complexity, more sophisticated biogeochemistry models (Carroll et al. 2022) and

higher resolution regionally coupled biogeophysical models (e.g. Sein et al. 2015; Wang

et al. 2023) will be essential for simulation and deployment of real-world OAE projects.

It would also be interesting to examine how the CDR efficiency and OAE limits

change in different future emission scenarios. At higher 𝑝CO2 the ocean surface would

be more acidic, and thus a larger OAE rate could be sustained without exceeding

preindustrial surface pH. Increased stratification may increase surface residence times,

thus decreasing the equilibration time. Furthermore, changes in biological activity,

general circulation patterns and atmospheric dynamics further complicate the picture.

Such effects and their interplay could potentially be studied in a full Earth system

model under different emission scenarios.

Code and data availability Code and data are available at Zenodo

https://doi.org/10.5281/zenodo.7460358 (He and Tyka 2023b).
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Supporting Information for “Limits and CO2 equilibration of near-coast alkalinity

enhancement”
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Figure 2-9: The left column shows normalized histograms of the annually averaged
∆pH or ∆ΩArag over all grid points in the injection strip (orange) or outside the
strip (green). The dotted vertical line indicates the respective target constraint. The
middle column shows the distribution of the sustained alkalinity flux in the injection
grid points. Note the x-axis is log-scaled, showing that injection flux spans >2 orders
of magnitude. The total global injection rate is shown above the histogram. The right
column shows the total global alkalinity addition rate (summed over all grid points
in the coastal strip) in blue and median pH change from the reference simulation
(exclusively over grid points in the strip) in orange. The shading shows the 10th and
90th percentile range. The addition rate and pH change stabilize after 5 years.
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Figure 2-10: Comparison of injection patterns using a pH constraint ∆pHtgt=0.1 (left)
or a carbonate saturation constraint ∆Ωtgt=0.5 (right) for four different regions.
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Figure 2-11: Mean pH change (left column) and alkalinity addition rate (middle
column) for different strip widths. The pH change and alkalinity addition rate is
averaged from years 5-20 in the simulation. Strip widths of 37 km and 74 km are not
shown since they are too thin to see clearly in the global figures. Right column shows
change in mean CO2 flux relative to the reference simulation.
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Figure 2-12: Detailed regional plots showing alkalinity fluxes, spanning the majority
of coastlines. The total injection rate (in Tmol/yr) is indicated above each panel. The
conversion into approximate negative emissions (in MtCO2/yr) assumes an uptake
efficiency of 0.8. The panels cover most major coastlines running top to bottom from
the Pacific Northwest down the west coast of the Americas, up the east coast of the
Americas, Europe, west coast of Africa, east coast of Africa, India, and finally Japan
and Australia.
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Figure 2-13: Pulse additions of alkalinity in additional locations. Due to computa-
tional constraints only a small number of pulse locations could be explored. The
locations were chosen as examples, coarsely distributed along all major coastlines, in
order to find and demonstrate the breadth of possible CO2 uptake kinetics.
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Chapter 3

How the source depth of coastal up-

welling relates to stratification and wind

Abstract

Wind-driven coastal upwelling is an important process that transports nutrients from
the deep ocean to the surface, fueling biological productivity. To better understand
what affects the upward transport of nutrients (and many other properties such as
temperature, salinity, oxygen, and carbon), it is necessary to know the depth of
source waters (i.e. “source depth”) or the density of source waters (“source density”).
Here, we focus on the upwelling driven by offshore Ekman transport and present a
scaling relation for the source depth and density by considering a balance between
the wind-driven upwelling and eddy-driven restratification processes. The scaling
suggests that the source depth varies as (𝜏/𝑁)1/2, while the source density goes as
(𝜏 1/2𝑁3/2). We test these relations using numerical simulations of an idealized coastal
upwelling front with varying constant wind forcing and initial stratification, and we
find good agreement between the theory and numerical experiments. This highlights
the importance of considering stratification in wind-driven upwelling dynamics, espe-
cially when thinking about how nutrient transport and primary production of coastal
upwelling regions might change with increased ocean warming and stratification.

This chapter was originally published as He, J., and A. Mahadevan, 2021: How the source depth
of coastal upwelling relates to stratification and wind. Journal of Geophysical Research: Oceans,
126 (12), e2021JC017 621, doi: 10.1029/2021JC017621.
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3.1 Introduction

Coastal upwelling driven by alongshore winds is an important physical process that

brings water from the deep ocean up to the surface. This upwelling results in the

vertical transport and redistribution of oceanic properties and has many consequences.

For instance, the upwelling of colder waters from depth can influence regional weather

and climate by lowering the sea surface temperature (Izumo et al. 2008). Moreover,

the vertical transport of nutrients in coastal upwelling regions fuels high primary

production (Chavez and Messié 2009; Carr 2001; Messié et al. 2009), and upwelling

of dissolved inorganic carbon affects the air-sea exchange of carbon dioxide (Hales

et al. 2005; Friederich et al. 2008; Torres et al. 2002).

Coastal upwelling is typically driven by an alongshore wind stress that results in

offshore Ekman transport given by 𝑉𝐸 = 𝜏/𝜌𝑓 , where 𝜏 is the alongshore wind stress, 𝜌

is the seawater density, and 𝑓 is the Coriolis parameter. From continuity, the offshore

Ekman transport is balanced by upwelling, so 𝑉𝐸 is also the volumetric upwelling

rate of water per unit length of coastline. Coastal upwelling occurs largely within a

Rossby radius of the coast, but farther offshore, Ekman pumping or suction driven

by the wind stress curl may also contribute to downwelling or upwelling (Pickett and

Paduan 2003; Koračin et al. 2004). The vertical velocities arising from the wind stress

curl are typically weaker than those associated with offshore Ekman transport, but

act over a larger area offshore, and so it may be important to consider both Ekman

transport and Ekman pumping/suction depending on the region of interest (Enriquez

and Friehe 1995; Pickett and Paduan 2003; Koračin et al. 2004).

Ekman transport theory has been applied extensively to quantify upwelling strength

– such as through an upwelling index – based on the magnitude of the alongshore

wind stress (e.g., Huyer 1983; Bakun 1990; Sydeman et al. 2014). There have been

further expansions of Ekman theory to create new indices for upwelling intensity that

account for wind-stress curl driven upwelling and the influence of onshore geostrophic

flow (Estrade et al. 2008; Marchesiello and Estrade 2010; Rossi et al. 2013; Jacox

et al. 2018). However, the upwelling intensity, which describes the volumetric rate
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of upwelled water, is just a piece of the puzzle. Because the ocean is stratified with

lighter layers of water above denser layers, many properties (e.g. temperature, salin-

ity, nutrients, dissolved inorganic carbon, and oxygen) also exhibit strong vertical

gradients in the water column. In a coastal upwelling region, isopycnals tilt up and

outcrop near the coast, so the vertical gradients give rise to horizontal surface gradi-

ents, which we are then able to observe from satellite imagery. In order to quantify

what properties are brought to the surface, it is important to consider the depth from

which water originates, i.e. its source depth 𝐷𝑠. For instance, consider a typical tem-

perature distribution that decreases monotonically with depth; upwelling water from

50 m will result in a different SST than if the water upwelled from 150 m. Similarly,

instead of depth, we can also think about the density of water that is upwelled, which

is useful for properties such as nitrate that correlate strongly with density (Omand

and Mahadevan 2013). An example of accounting for upwelling source waters is the

“Biologically Effective Upwelling Transport Index,” which estimates the upward ni-

trate flux by multiplying the vertical transport by the nitrate concentration at the

base of the mixed layer, where the mixed layer depth is taken to be the source depth

(Jacox et al. 2018).

The effect of different upwelling source depths on the SST and phytoplankton pro-

ductivity are clearly observable in the Arabian Sea (AS) and Bay of Bengal (BoB).

Southwesterly winds blow over both basins during the summer monsoon, which causes

upwelling along the western coasts of the AS and BoB. Interestingly though, observa-

tions show dramatically stronger effects in the AS compared to the BoB. For instance,

climatological SST in the western AS cools by 4.4 ∘C from May to August, while SST

in the western BoB only cools by 1.3 ∘C during this same time frame (Fig. 3-1). It is

easy to point to the stronger southwesterly wind stress in the AS (0.19 Nm−2 in the

western AS compared to 0.06 Nm−2 in the western BoB) as being chiefly responsible

for the different upwelling responses (Fig. 3-1b). In addition to the large difference in

winds, the BoB is also strikingly more stratified than the AS year round. The density

stratification, characterized by the square of the buoyancy frequency 𝑁2 = −𝑔
𝜌
𝜕𝜌
𝜕𝑧

,

when depth-averaged over the upper 250 m in the BoB is about double that in the
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Figure 3-1: Monthly climatology for the Arabian Sea (AS) and Bay of Bengal (BoB)
calculated for the period 1989-2017. a. Sea surface temperature (SST, color) and
wind stress (arrows) in the Arabian Sea (AS) and Bay of Bengal (BoB) for July. b.
Seasonal cycle of SST and southwesterly wind stress averaged in the regions denoted
by boxes in panel a. c. Seasonal cycle of depth-averaged 𝑁2 in the upper 250 m of the
ocean in the AS and BoB boxes. SST and wind data are from monthly ERA-Interim
Reanalysis (Dee et al. 2011), wind stress is calculated with the Large and Pond (1981)
formula, and 𝑁2 is calculated from the MIMOC climatology (Schmidtko et al. 2013)
using the Gibbs Seawater Toolbox (McDougall and Barker 2011).

AS (Fig. 3-1c). Prasanna Kumar et al. (2002) concluded that the weaker wind-driven

mixing in the BoB is unable to break through the strong surface stratification and

entrain cold nutrient-rich water from below, which explains the higher SST and lower

productivity in the BoB compared to the AS. Similarly, stratification would also

counter the effect of wind-driven coastal upwelling and contribute to a shallower up-

welling source depth near the western margin of the BoB compared to the AS. The

contrasting response to coastal upwelling in the AS and BoB motivates the question

as to what sets the source depth and source density of upwelling and how these differ

between the two basins.

Previous methods for estimating source depth include using an offshore profile

and identifying the depth where the density is the same as the onshore surface den-

sity (Carr and Kearns 2003), identifying the intersection of offshore and onshore

temperature-salinity diagrams (Carmack and Aagaard 1977; Messié et al. 2009) or

similarly using salinity and silicate as depth tracers (van Geen et al. 2000), and track-

ing virtual particles in a numerical ocean model (Chhak and Lorenzo 2007). More
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recently, Jacox and Edwards (2011, 2012), following the theory of Lentz and Chap-

man (2004), investigated how the shelf slope and stratification affect the cross-shelf

circulation and source depth in a two-dimensional model. They found that the source

depth varies with the topographic Burger number, which is dependent on stratifica-

tion, bottom slope, and 𝑓 (cf. Fig. 3 Jacox and Edwards 2012). Furthermore they

fit empirical models for the temporal evolution of source depth and upwelled nitrate

(cf. Eq. (9), Table 2 Jacox and Edwards 2011) to model how the source depth grows

over the course of an individual upwelling event lasting a few days.

In this study, we move beyond one- and two-dimensional models and empirical

studies to consider how wind and stratification affect the source depth. Without

considering the spatio-temporal variability in the winds or sloping topography that

includes a continental shelf and slope, we argue that the source depth in an upwelling

region results from a balance between the wind-driven overturning and eddy-driven

restratification. It is shown that alongshore winds give rise to an upwelling front that

exhibits baroclinic instability (Brink 2016; Brink and Seo 2016; Thomsen et al. 2021).

These eddies are ubiquitous in upwelling fronts and tend to flatten isopycnals, thereby

countering the steepening of isopycnals due to Ekman transport (Durski and Allen

2005; Capet et al. 2008), and preventing (or slowing) an indefinite increase in the

source depth. This countering effect of eddies has been related to reduced nutrient

concentrations and primary production in nearshore coastal upwelling regions (e.g.,

Gruber et al. 2011; Hernández-Carrasco et al. 2014), but to our knowledge, it has not

yet been applied to estimating the source depth. We use a three-dimensional numer-

ical model of an upwelling system to experiment with a range of parameters and test

the theory. Our theory is applicable in the mean (seasonal or longer-term average)

sense to any coastal upwelling region, such as the Eastern Boundary Upwelling Sys-

tems (EBUS), and for assessing how such regions may differ from each other or be

affected by climate change.

In what follows, we begin, in Sec. 3.2, by developing a theoretical scaling relation

for source depth, 𝐷𝑠 as a function of windstress, 𝜏 , and stratification, 𝑁2, in a dy-

namically equilibrated upwelling front. We then extend this to estimate the source
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density, or the density difference of the source waters from the undisturbed (offshore)

surface density. In Sec. 3.3, we describe the idealized numerical model, experiments,

and methods for testing the scaling relation. The results of the numerical experi-

ments and comparison to the scaling relation are presented in Sec. 3.4. In Sec. 3.5,

we discuss potential implications of the source depth scaling on upwelling regions

undergoing climate change before summarizing and concluding in Sec. 3.6.

3.2 Theoretical estimate of source depth

To develop a scaling for the quasi-balanced source depth, we begin by considering

an idealized ocean initially at rest with horizontal isopycnals and a constant strat-

ification. When a steady upwelling-favorable wind is imposed, an offshore Ekman

transport is developed at the surface with a return flow in the interior, which re-

sults in an wind-driven overturning circulation denoted by the stream function 𝜓𝑤

(Fig. 3-2). As dense water upwells near the coast, isopycnals steepen and outcrop

at the surface, creating an upwelling front with a cross-shore buoyancy gradient as

described by Allen et al. (1995). If the wind persists in maintaining the upwelling

front, the front eventually becomes baroclinically unstable (Durski and Allen 2005;

Brink 2016) and generates eddies. We assume the diapycnal mixing is small and that

most transport occurs along isopycnals, so the effect of the eddies is to adiabatically

flatten isopycnals in the along-front mean sense (Lee et al. 1997; Marshall and Radko

2003). This slumping of isopycnals and re-stratifying of the upper ocean by eddies

is described by the eddy stream function 𝜓𝑒, which acts in the opposite direction to

𝜓𝑤 (Fig. 3-2). A dynamical equilibrium is achieved when the mean along-front wind-

driven steepening of isopycnals is countered by the eddy-driven slumping (Fig. 3-2).

This is the same idea as the eddy equilibration mechanism of Marshall and Radko

(2003) for the Southern Ocean, except that a coastal upwelling front is on a much

smaller scale than the Southern Ocean front (100 km as opposed to 2000 km). Re-

cently, Thomsen et al. (2021) applied this Southern Ocean analogy to upwelling sys-

tems and found that in the absence of heat flux, baroclinic instabilities do indeed
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lead to a near complete cancellation of Ekman upwelling. Furthermore, Mahadevan

et al. (2010) showed that the residual mean framework is also applicable to an open

ocean non-quasigeostrophic mixed layer front, and here we follow their approach in

balancing 𝜓𝑤 with 𝜓𝑒 to solve for the equilibrated source depth.

coast

Figure 3-2: Schematic of a steady state upwelling front in the northern hemisphere.
The shading denotes layers of different potential density with isopycnals denoted by
the interfacial surfaces. The coast is on the left, and an alongshore wind blowing into
the page causes an offshore Ekman transport that results in a wind driven overturning
circulation, 𝜓𝑤. Baroclinic instabilities produce an opposing eddy-driven circulation
(in the along-shore mean) given by the streamfunction 𝜓𝑒. The width of the front is
𝐿, and the source depth is 𝐷𝑠.

3.2.1 Source depth scaling

The wind-driven overturning circulation 𝜓𝑤 is simply given by the Ekman transport

𝜓𝑤 =
−𝜏
𝜌0𝑓

, (3.1)

but we need choose a form for the eddy-driven stream function 𝜓𝑒. We use the

mixed-layer instability parameterization for 𝜓𝑒 (Fox-Kemper et al. 2008; Fox-Kemper

and Ferrari 2008), given by

𝜓𝑒 = 𝐶𝑒
𝐷2

𝑠𝑏𝑦
𝑓

, (3.2)
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where 𝑏𝑦 (s−2) is the surface lateral buoyancy gradient, and buoyancy is defined

as 𝑏 ≡ −𝑔 𝜌
𝜌0

(ms−2). The coefficient is 𝐶𝑒 = 0.06. In the Fox-Kemper et al. (2008)

formulation, the strength of 𝜓𝑒 depends on the mixed layer depth, but here we use

the source depth, 𝐷𝑠, as the vertical scale, since this is the unstratified depth in the

upwelling region shoreward of the upwelling front. With this choice for 𝜓𝑒, we assume

that baroclinic instability is dominant in the upper ocean region of interest, and we

later show in Sec. 3.4 that this choice adequately captures the eddy dynamics in our

numerical model. One thing to note is that the baroclinic instabilities represented

by 𝜓𝑒 act in the upper ocean, while the wind-driven overturning circulation acts

throughout the water column, so a balance can only be achieved in the upper ocean.

However, we are primarily concerned with water entering the mixed layer and reaching

the surface, so we focus on the balance of stream functions above the source depth

and assume the wind-driven circulation is closed in the interior.

The lateral buoyancy gradient 𝑏𝑦 scales as

𝑏𝑦 ∼
∆𝑏

𝐿
, (3.3)

where ∆𝑏 is the surface buoyancy difference across the upwelling front and 𝐿 is

the width of the front (Fig. 3-2). Typically if a pycnocline is present in the initial

conditions, then the upwelled pycnocline is called the upwelling front since it has the

greatest density gradient. In the case of 2D upwelling, this upwelling front will move

offshore with time due to Ekman transport, so the front width will be narrower and

quite different from the distance between the coast and the front (Szoeke and Richman

1984). However, in our idealized setup with uniform vertical stratification, 𝐿 extends

all the way to the coast and it is proportional to the cross-shore distance over which

the isopycnals are sloping, which is the Rossby deformation radius. Though the eddy

field will have some affect the surface front width, we take 𝐿 to be the proportional

to the Rossby radius of deformation. Lentz and Chapman (2004) found 𝐿 = 4𝑁𝐷𝑠/𝑓

from simulations of multiple coastal upwelling regions, and we also find that taking

𝐿 = 4𝑁𝐷𝑠/𝑓 generally agrees with the surface expression of the front across our
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simulations (see Fig. 3-14; Supplementary materials).

Next, the stratification 𝑁2 is defined as the vertical buoyancy gradient 𝑏𝑧, which

is approximately

𝑁2 = 𝑏𝑧 ∼
∆𝑏

𝐷𝑠

, (3.4)

where ∆𝑏 is now the buoyancy difference between the surface and at a depth 𝐷𝑠.

If we assume that coastal upwelling simply tilts isopycnals so that vertical buoyancy

gradients become lateral surface buoyancy gradients, then ∆𝑏 in Eqs. (3.3) and (3.4)

are the same. This allows us to substitute ∆𝑏 = 𝑁2𝐷𝑠 from Eq. (3.4) into Eq. (3.3),

and we can now relate the lateral buoyancy gradient to stratification and the source

depth. Further, substituting 𝐿 = 4𝑁𝐷𝑠/𝑓 into Eq. (3.4) yields 𝑏𝑦 = 𝑁𝑓/4.

Lastly, balancing 𝜓𝑤 with 𝜓𝑒 from Eqs. (3.1) and (3.2) and making the substitution

𝑏𝑦 = 𝑁𝑓/4 yields the following scaling estimate for the source depth

𝐷𝑠 = 𝐶𝑠

(︂
𝜏

𝜌0𝑁𝑓

)︂1/2

, (3.5)

where 𝐶𝑠 = (4/𝐶𝑒)
1/2 = 8.16 for 𝐶𝑒 = 0.06. Equation (3.5) tells us that 𝐷𝑠 ∼ 𝜏 1/2,

as stronger winds drive greater offshore Ekman transport, resulting in the upwelling

of deeper water. Conversely, 𝐷𝑠 ∼ 𝑁−1/2, since increased stratification creates a

larger lateral density gradient, which strengthens the eddy overturning circulation

(Eq. 3.10) to reduce upwelling depth. Lastly, the 1/2 power-law in Eq. (3.5) implies

that source depth is most sensitive to changes when 𝜏/𝑁 is small, i.e. in strongly

stratified regions with weak wind.

Interestingly Eq. (3.5) gives the same scaling as the Pollard-Rhines-Thompson

(PRT) wind-driven mixed layer depth as both are dependent on (𝜏/𝜌0𝑓𝑁)1/2. How-

ever, Eq. (3.5) arises from a different process (balancing eddy restratification with

upwelling) than the Richardson-number criteria that is used for the PRT depth (Pol-

lard et al. 1973). One difference is that the coefficient for the PRT depth is around

0.57-1.29 (Lentz 1992), while the coefficient in Eq. (3.5) is about 8 times larger. It

makes sense that the source depth varies in a way similar to the mixed layer depth
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since the source depth has to be at least as deep as the mixed layer depth. Moreover,

it is reassuring that the PRT depth has been shown to match well with observed

mixed layer depths in upwelling regions around the world (Lentz 1992; Dever et al.

2006), and the onshore velocities are found to peak below the PRT depth (Dever et al.

2006). So it seems reasonable that the source depth would correlate with the PRT

depth, but be deeper overall.

3.2.2 Density of upwelled water

While it is intuitive to think of a source depth, many variables of interest in the

ocean–such as temperature and nitrate–have a stronger correlation with density than

depth (Omand and Mahadevan 2013). Thus, depending on the application, it may be

useful to think in terms of the density of upwelled water instead of its source depth.

We denote the upwelling density as a density offset ∆𝜌 from offshore surface waters

𝜌offshore, so the true density of water upwelled near the coast is equal to ∆𝜌+ 𝜌offshore.

To obtain a scaling relation for ∆𝜌, we use Eq. (3.4) to make the substitution

𝐷𝑠 = − 𝑔
𝜌0

Δ𝜌
𝑁2 in Eq. (3.5). Equation (3.5) can then be recast as a scaling relationship

for ∆𝜌 as a function of the wind stress and stratification:

∆𝜌 =
𝐶𝑠

𝑔

(︂
𝜌0𝜏

𝑓

)︂1/2

𝑁3/2. (3.6)

In contrast to the source depth in Eq. (3.5), the density offset scales with 𝑁3/2

since larger vertical density gradients (𝑁2) result in a greater surface lateral density

difference (∆𝜌) and equivalently, a larger density offset from the source of upwelling.

∆𝜌 scales as 𝑁3/2 instead of 𝑁2, because stronger stratification also strengthens the

eddy overturning circulation and weakens upwelling. Thus, eddies reduce the extent

to which stratification influences the density offset, but ∆𝜌 still has a stronger depen-

dence on stratification than wind. Any combination of wind stress and stratification

yields a unique source depth and density offset, which means we can use 𝐷𝑠 and ∆𝜌

interchangeably and easily convert between the two.
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3.3 Methods

To evaluate Eqs. (3.5) and (3.6), we use a three-dimensionsal (3D) numerical ocean

model configured in a periodic channel with stratification and wind stress that repre-

sent the range observed in the Arabian Sea and Bay of Bengal. We run simulations

with different values of wind stress and initial stratification to test how the source

depth and density offset respond. In these simulations, we use a constant value of

wind stress and uniform 𝑁2 for the majority of cases, although we also test the scaling

with more realistic profiles of 𝑁2(𝑧). From the model outputs, we calculate the source

depth 𝐷𝑠 and density offset ∆𝜌 based on the upwelling in the 3D numerical model

and compare those to theoretical estimates of 𝐷𝑠 and ∆𝜌 from Eqs. (3.5) and (3.6).

3.3.1 Numerical model

We use the Process Study Ocean Model, which numerically solves the nonhydro-

static Bousinesq equations (Mahadevan et al. 1996a,b). The model domain is a

flat-bottomed re-entrant channel on an 𝑓 -plane centered at a latitude of 15∘N, ap-

proximately the mid-latitude of the AS and BoB. The channel extends 96 km in the

alongshore (𝑥) direction, 384 km in the cross-shore (𝑦) direction, and has a total

depth of 500 m (in the 𝑧 direction). The horizontal grid resolution is 1 km, and there

are 32 stretched vertical levels ranging in thickness from 1 m at the surface to 36 m at

the bottom. A horizontal resolution of 2 km is also tested and it did not significantly

alter the source depth, but we use 1 km which is consistent with Durski and Allen

(2005). The boundary conditions are periodic in the alongshore direction, and no-

flow boundary conditions are enforced at the walls in the cross-shore direction. The

cross-shore width is chosen to be large enough so that the offshore boundary does not

influence the upwelling dynamics at the coast located at 𝑦 = 0 km. Deepening the

domain to 1000 m and doubling the width of the channel in the 𝑦 direction has no

significant effect on the source depth. The model is initialized with the same vertical

density profile throughout the domain and is started from a state of rest with no
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initial horizontal gradients.

A wind stress 𝜏 = (𝜏𝑥, 0) is applied in the negative 𝑥 direction, which drives

upwelling at the coast located at 𝑦 = 0 (Fig. 3-3). The alongshore wind stress is

𝜏𝑥 = −𝜏𝑚𝑎𝑥 everywhere except near the offshore wall, where 𝜏𝑥 decays linearly to

0 from 𝑦 = 234 km to 𝑦 = 385 km to spread the downwelling over a large area far

offshore. At the start of the model run 𝜏 is increased linearly from 0 to 𝜏𝑥 over the

first 10 days to gradually spin up the model and avoid generating strong internal

waves. After day 10, the wind stress is held constant.

To test the validity of explaining source depth with the dynamical equilibrium

proposed, we need to be careful with the model mixing scheme. Here, we aim to

characterize the source depth that results from the balance between coastal upwelling

and eddy-restratification, which are both largely adiabatic processes. But, the source

depth could also deepen due to vertical mixing, a diapycnal process. In order to focus

on the adiabatic processes, we use a simple mixing scheme that results in a predictable

mixed layer depth, which is less than the source depth. This ensures that the source

depth is not influenced by diabatic mixing. In the horizontal, we use a constant eddy

diffusivity and viscosity of 𝐾ℎ = 1 m2s−1 in all the simulations. The vertical eddy

diffusivity and viscosity 𝐾𝑧 is dependent on the wind stress and is parameterized

following Mahadevan et al. (2010) as

𝐾𝑧 = max

{︂
1

2
𝐾𝑚𝑎𝑥

[︂
1 + tanh

(︂
𝑧 + 𝛿𝐸
∆

𝜋

)︂]︂
, 𝐾𝑚𝑖𝑛

}︂
, (3.7)

where 𝛿𝐸 = 0.4
𝑓

(︁
𝜏
𝜌

)︁1/2
is the depth of the surface Ekman layer and ∆ (m) is the

transition height (see Fig. 3-3). All of the numerical experiments used 𝐾𝑚𝑎𝑥 = 10−2

m2s−1, 𝐾𝑚𝑖𝑛 = 10−5 m2s−1, and ∆ = 0.5𝛿𝐸, based on Mahadevan et al. (2010).

Equation (3.7) creates a surface mixed layer whose thickness depends on the wind

stress while neglecting the effect of air-sea buoyancy fluxes (e.g. heating or cooling),

which are not included in the model. A constraint is that the source depth 𝐷𝑠 cannot

be shallower than the mixed layer depth MLD, and is in fact much deeper in the

simulations. By purposefully making the model mixing independent of𝑁2, we are able
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to evaluate the effect of 𝑁2 on the eddy restratification process without concern that

lowered stratification might increase mixing, and thereby enhance the source depth. If

we were to use a more sophisticated, but less interpretable, turbulence closure scheme

–such as Mellor-Yamada , 𝑘-𝜖, or K-Profile Parameterization (Wijesekera et al. 2003;

Mukherjee et al. 2016)– as is commonly used in coastal settings, then it would less

clear how much vertical mixing affects the source depth. This would make it more

difficult to isolate the dependence of source depth on the balance between 𝜓𝑤 and 𝜓𝑒.

We run nine experiments varying the initial 𝑁2 between 10−5 and 10−4 s−2 and

varying 𝜏𝑚𝑎𝑥 between 10−2 and 10−1 Nm−2. The stratification values were chosen

to approximately span the range of observed 𝑁2 (averaged over the top 500 m) in

the Arabian Sea and Bay of Bengal. While the southwesterly wind stress reaches

0.2 Nm−2 in the Arabian Sea, this high a value was difficult to implement since the

wind in the model blows constantly for months and it would necessitate a very small

time step. So we cap the highest constant wind stress in our model simulations

at 0.1 Nm−2. Three additional experiments are run with the initial 𝑁2(𝑧) varying

with depth to test the effects of using more realistic density stratification profiles.

For these three experiments, we vary the thickness of the initial mixed layer (ML)

and the peak stratification in the initial profile 𝑁2
𝑝𝑒𝑎𝑘, but maintain the same depth-

averaged stratification in the upper 250 m. These additional three experiments are

further explained in Sec. 3.4.3. Table 3.1 summarizes the parameters used in each

experiment. Each simulation is integrated forward in time with a time step of 108 s

(for 𝜏𝑚𝑎𝑥 = 0.1 Nm−2) or 216 s (all other experiments) for at least 30 days after the

upwelling front becomes unstable. The total time period of the simulations ranged

from 60 days to 180 days, depending on how long it takes for the front to become

unstable. Outputs are saved at 1-day intervals.

Our simulations are designed to be as simple as possible while still capturing the

dynamics of interest - i.e., the competition between the wind-driven upwelling and

eddies. As a result, several other factors that affect upwelling are neglected. To

start, we ignore bottom topography, which impacts the source depth through altering

the cross-shore velocity and its depth structure (Lentz and Chapman 2004; Choboter
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et al. 2011; Jacox and Edwards 2011, 2012). Here we focus on upwelling just from

the interior and not coming up slope through the bottom boundary layer. Moreover,

Brink (2016) found that the available potential energy for baroclinic instability, as

well as the eddy kinetic energy and eddy length scale, all depend on the bottom slope.

In addition, there is no bottom friction in the experiments shown here; we find that

the inclusion of bottom friction does not significantly alter the source depth, so it is

omitted to exclude having another parameter to tune. Because a constant wind stress

is applied for months in the model, we see unrealistically large horizontal velocities

of up to 2 ms−1 in some simulations. For simplicity though, we keep the wind stress

constant in time, without any cross-shore component or wind stress curl. To keep

the wind-driven upwelling circulation 𝜓𝑤 simple, we omit other processes that affect

the cross-shore circulation such as an alongshore pressure gradient, which would drive

onshore geostrophic transport and decrease the upwelling velocities (Marchesiello and

Estrade 2010). Lastly, a consequence of the minimal mixing is that surface Ekman

transport sometimes results in unstable density profiles near the surface. This could

be remedied by adding a convective mixing scheme, but is avoided because we find

it results in unrealistic horizontal grid-scale gradients (Cessi 1996). We think that

these unrealistic artifacts of the model do not affect the overall results of this study.

3.3.2 Source depth calculation

We determine the “true” source depth in the model by using passive tracers to track

the initial depth of water parcels. The model is initialized with 32 separate passive

tracers, one at each vertical level. Each tracer is initialized to have a concentration of

1 in its starting grid cell and 0 everywhere else. As water advects in the model, each

grid cell will have a combination of tracers from various starting depths. We obtain

a single source depth for each grid cell by taking a weighted average of all the initial

depths of the tracers present, weighted by the tracer concentrations. Mathematically,

this is defined as
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Table 3.1: Alongshore wind stress 𝜏𝑚𝑎𝑥, depth-averaged initial stratification (𝑁2
𝑎𝑣𝑔)

in upper 250 m, and details about the shape of the initial 𝑁2 profile for the various
simulations in this paper. The first nine experiments are initialized with an uniform
𝑁2 profile. The experiments “small peak,” “large peak,” and “deep ML” are initialized
with non-constant 𝑁2 profiles with varying mixed layer thickness (ML) and peak 𝑁2

values (𝑁2
𝑝𝑒𝑎𝑘) (Fig. 3-9).

Experiment 𝜏𝑚𝑎𝑥 (Nm−2) 𝑁2
𝑎𝑣𝑔 (s−2) 𝑁2 shape

lowW_lowN 10−2 10−5 constant
lowW_medN 10−2 5.5× 10−5 constant
lowW_highN 10−2 10−4 constant
medW_lowN 5.5× 10−2 10−5 constant
medW_medN 5.5× 10−2 5.5× 10−5 constant
medW_highN 5.5× 10−2 10−4 constant
highW_lowN 10−1 10−5 constant
highW_medN 10−1 5.5× 10−5 constant
highW_highN 10−1 10−4 constant

ML (m) 𝑁2
𝑝𝑒𝑎𝑘 (s−2)

small peak* 10−1 10−4 25 10−3

large peak* 10−1 10−4 25 2× 10−3

deep ML* 10−1 10−4 75 10−3

*See Sec. 3.4.3 for more details.

𝐷𝑠 =

∑︀𝑀
𝑖=1 𝑐𝑖𝑑𝑖∑︀𝑀
𝑖=1 𝑐𝑖

, (3.8)

where 𝑀 is the number of tracers (32 in this case), 𝑑𝑖 is the initial depth of tracer

𝑖, and 𝑐𝑖 is the concentration of tracer 𝑖. The density offset ∆𝜌 is calculated the same

way using Eq. (3.8) by replacing 𝑑𝑖 with ∆𝜌𝑖, where ∆𝜌𝑖 is the initial density offset

of tracer 𝑖 from the surface density. For the case of initial constant stratification,

∆𝜌𝑖 = −𝜌0
𝑔
𝑁2𝑑𝑖. This allows us to easily convert between 𝐷𝑠 and ∆𝜌 calculated in

the model to ∆𝜌 using ∆𝜌 = −𝜌0
𝑔
𝑁2𝐷𝑠.

We calculate the source depth over a time period when the model has achieved

a dynamic equilibrium. This is identified as a 20 day period of the model run with

the minimal change in eddy kinetic energy (𝐸𝐾𝐸) (Supporting Information, Figs. 3-

12, 3-13). The 𝐸𝐾𝐸 is calculated as 𝐸𝐾𝐸 = 1
2
(𝑢′2 + 𝑣′2 + 𝑤′2), where 𝑢′, 𝑣′, 𝑤′

are respectively the alongshore, cross-shore, and vertical velocity anomalies from the

alongshore mean. For each simulation, we identify the period of dynamic equilibrium
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Figure 3-3: Model setup and snapshot of isopycnals (black contours, interval of 0.15
kg/m3) and depth tracers at day 45 for experiment highW_highN (Table 3.1). A
steady alongshore wind blows into the page, driving coastal upwelling at the western
coast of the domain. The initial depth of the dominant tracer in each grid cell is
shown in colors, and the shape of the vertical diffusivity (and viscosity) 𝐾𝑧 profile is
also indicated.

as the 20-day period where the linear regression of the depth-averaged 𝐸𝐾𝐸 in a

nearshore 150 km band has the smallest slope, so the change in 𝐸𝐾𝐸 with time

is minimized during this period. We also find that our main results are robust to

different choices of the 20-day time windows.

Then for each day, we determine the source depth for a particular simulation by

averaging over the upwelling area, defined by a distance 𝑟 from the coast and a depth

𝛿 from the surface. We take 𝑟 to be 30 km to represent a narrow coastal band where

the deepest isopycnals are outcropping right at the coast. As for 𝛿, since we are

considering water parcels that reach the surface, we choose 𝛿 to include just the top 3

layers of grid cells representing the upper 11.7 m. We find that varying 𝛿 between the

top 2 to 4 grid cells (which changes 𝛿 between 6.1 and 17.6 m) and varying 𝑟 between

10 and 40 km alters the source depth by about 10 m. Averaging over the area given

by 𝑟 and 𝛿 gives a single source depth for each cross-shore transect in the model.

The source depth is then calculated according to Eq. (3.8) for each day of the 20-day
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period and for each cross-sectional slice in the alongshore direction (we average 96

cross-shore slices of the model over 20 snapshots, i.e., over 𝑛 = 1920 realizations).

We report the median 𝐷𝑠 during this period, as well as the 10th and 90th percentile

values.

3.4 Results

3.4.1 Evolution of model eddy field

We now have everything we need to estimate 𝐷𝑠 and ∆𝜌 from the scaling relations

developed in Sec. 3.2 (Eqs. 3.5 and 3.6) and compare those to the actual source

depths and density offsets calculated from tracers. But before doing that, we first

show that the model produces reasonable upwelling dynamics and check that our

assumption of a dynamic equilibrium is valid. Prior the onset of instabilities, the

model produces the expected two-dimensional Ekman response (Fig. 3-4a). There is

an offshore Ekman transport in the surface boundary layer with a weak return flow

distributed throughout the interior, which is consistent with previous descriptions of

coastal upwelling (e.g. Allen et al. 1995; Brink 1983; Huyer 1983; Lentz and Chapman

2004). Isopycnals steepen and outcrop near the coast, and we see the formation of

a lateral density front and an alongshore surface-intensified jet in the same direction

as the wind (Fig. 3-4a). Note that the jet velocities are larger than what is observed

in the ocean because the wind is blowing nonstop in our model over many days, and

the example shown is a strong wind case. Moreover, the upwelling transport in the

model, calculated from integrating vertical velocities within a Rossby radius of the

coast at the Ekman depth, is consistent with the theoretical value given by 𝜏/𝜌𝑓 .

Far offshore, beyond the region of interest, isopycnals are flat and the flow is

barotropic, so the onshore return flow is uniformly distributed with depth below the

mixed layer. One concern, with two-dimensional models or channel models such

as ours, is that if the model is run for long enough, the deep offshore waters will

reach the coast and the model will no longer be realistic. However, our simulations
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are not run long enough that this is an issue. For example, on day 20 in experiment

highW_highN shown in Fig. 3-4a, the onshore return flow is approximately barotropic

around 275 km offshore with a velocity < 0.01 ms−1. It would take over 300 days for

water from 𝑦 = 275 km to reach the coast, which is far longer than the length of any

of our simulations (which extend up to 180 days at most). Furthermore, 300 days is

a lower-bound estimate and this timescale will be much larger for simulations with a

weaker wind and weaker cross-shore velocities.

As the wind forcing persists, the front continues to intensify until it becomes

baroclinically unstable (Fig. 3-4b). The emergence of eddies can be seen in the surface

fields as well as in the 𝐸𝐾𝐸 (Fig. 3-12), which is initially zero during the spin-up

of the simulations and then sharply increases when instabilities emerge. The onset

of instabilities takes anywhere from 30 days for the high wind stress simulations, to

over 100 days for the lower wind stress simulations. As expected, the 𝐸𝐾𝐸 increases

with stratification (due to an increased source of available potential energy) and wind

stress.

The 𝐸𝐾𝐸 is typically much larger than the mean kinetic energy (Fig. 3-12). This

behavior is consistent with the findings of Brink (2016). Lastly, there is a range

of front widths 𝐿 across the various simulations, which can be seen qualitatively in

Fig. 3-6. Overall the front widths are consistent with the Rossby deformation radius.

For a given stratification, medium and high winds result in a wider front since 𝐷𝑠

is greater. And for a fixed wind stress, medium and high stratification gives rise to

larger 𝐿 than weak stratification.

Next, we check the plausibility of assuming a balance between 𝜓𝑤 (Eq. 3.1) and

𝜓𝑒 (Eq. 3.2). Qualitatively, we see from Fig. 3-4 that eddies re-stratify the surface;

the isopycnals are less vertical on day 45, a few days after the onset of baroclinic

instabilities, as compared to day 20. We also directly calculate and compare 𝜓𝑤

(Eq. 3.1) and 𝜓𝑒 (Eq. 3.2) from the model fields (Fig. 3-5) to evaluate the balance

between the wind-driven steepening and eddy-driven slumping of isopycnals. Similar

to Mahadevan et al. (2010), we calculate 𝜓𝑤 from the model velocity fields as
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Figure 3-4: Alongshore velocity 𝑢 (colors) and density (black contours) at days 20 and
45 of experiment highW_highN (Table 3.1). a. Initially, after the alongshore wind is
turned on, there is a 2D response that produces an upwelling front and an alongshore
geostrophic jet. Deeper isopycnals outcrop near the coast and are nearly vertical in the
upwelling region. b. At a later time, the front then becomes baroclinically unstable
and the resulting eddies slump the isopycnals. The density contour interval is 0.15
kg/m3. This is an idealized model setup with a constant wind blowing continuously,
so the lateral velocities are larger than what would be observed in the real ocean.

𝜓𝑤 = −
ˆ 𝑧

0

𝑣 𝑑𝑧 =

ˆ 𝑦

0

�̄� 𝑑𝑦, (3.9)

where the overbar denotes an alongshore average. The eddy stream function 𝜓𝑒

is typically defined as 𝜓𝑒 = 𝑣′𝑏′/𝑏𝑧 in the interior (Andrews and McIntyre 1976) and

𝜓𝑒 = −𝑤′𝑏′/𝑏𝑦 for the boundary layer (Held and Schneider 1999). These two forms

were combined into a more general definition in Cerovečki et al. (2009), in which a

coordinate stretching factor 𝜖 is added to correct for the small aspect ratio seen in

the ocean and in our model. Here, we use the Cerovecki formulation of 𝜓𝑒 that is also

used in Mahadevan et al. (2010):

𝜓𝑒 = 𝜖

(︃
𝜖𝑣′𝑏′𝑏𝑧 − 1

𝜖
𝑤′𝑏′𝑏𝑦

𝑏𝑦
2
+ 𝜖2𝑏𝑧

2

)︃
, (3.10)

where the primes denote deviations from the alongshore mean (𝑣′ = 𝑣 − 𝑣, 𝑤′ =

𝑤 − �̄�), and 𝜖 = 10−3 is a dimensionless vertical stretching factor. Mahadevan et al.

(2010) found that the results are not sensitive to varying 𝜖 between 10−2 and 10−4.

A cross-sectional slice of 𝜓𝑤 and 𝜓𝑒 calculated using Eqs. 3.9 and 3.10 on day
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45 for experiment highW_high_N (Table 3.1) is shown in Fig. 3-5. The colorbars

are scaled so that positive values are orange and negative values are purple, with

white being zero. As expected, 𝜓𝑤 is predominantly positive, indicating a clockwise

circulation that upwells dense water near the coast at 𝑦 = 0 (Fig. 3-5a). On the

other hand, 𝜓𝑒 is mostly negative, so it drives a counter-clockwise circulation that

opposes 𝜓𝑤 (Fig. 3-5b). Averaged over the region of sloping isopycnals (130 km from

the coast), 𝜓𝑒 and 𝜓𝑤 are similar in magnitude and approximately balance each other

above the source depth (Fig. 3-5c). The Fox-Kemper et al. (2008) parameterization

for mixed-layer instabilities 𝜓𝑀𝐿𝐼–from Eq. (3.2), where we replaced 𝑏𝑦 with 𝑁𝑓/4–is

shown in the gray-dashed line in Fig. 3-5c, and it seems to be an appropriate choice

since it adequately captures the eddy activity in the simulations. We also experiment

with using the parameterization of Marshall and Radko (2003) for mesoscale eddies,

but it does a much poorer job of capturing the vertical structure and magnitude

of 𝜓𝑒 in our model. The other experiments with different parameter choices look

qualitatively similar to Fig. 3-5 in that 𝜓𝑒 and 𝜓𝑤 are of opposite signs and similar

order of magnitude, and that 𝜓𝑀𝐿𝐼 adequately captures the magnitude and structure

of 𝜓𝑒. Thus, we feel confident in our choice of eddy parameterization and assumption

of a quasi-balanced state in the overturning.

3.4.2 Evaluation of scaling relations

Finally, we can use our model experiments to assess the scaling relations for source

depth (Eq. (3.5)) and density offset (Eq. (3.6)). Figure 3-6 shows a snapshot of the

source depth calculated from tracers across the nine main simulations (Tab. 3.1).

In general, for a given stratification, the source depth increases as expected with

stronger winds. For a fixed wind stress, we see the source depth decreasing with

higher stratification as predicted by Eq. (3.5). In addition, the density contours

in Fig. 3-6 are all at the same 0.05 kgm−3 intervals, which allows us to compare the

density offset (∆𝜌, i.e. the difference in density across the front) between simulations.

It is clear that ∆𝜌 is directly related to stratification, as evidenced by the increasing

number of contours as stratification increases, which is consistent with Eq. (3.6).
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Figure 3-5: a. Wind-driven overturning stream function 𝜓𝑤 and b. eddy-induced
overturning stream function 𝜓𝑒 for experiment highW_highN (Table 3.1). The along-
shore averaged isopycnals are shown in black contours, and the cross section is from
day 45. The colorbars are scaled so that zero is white, positive values are orange,
and negative values are purple. c. Stream functions averaged over the region of
sloping isopycnals (from the coast to 𝑦=130 km) in the cross-shore direction. The
Fox-Kemper et al. (2008) parameterization for mixed-layer instabilities 𝜓𝑀𝐿𝐼 (using
Eq. (3.2), where 𝑏𝑦 = 𝑁𝑓/4) is also shown in the dashed gray line.

One point to highlight is that a deeper source depth does not necessarily imply a

larger density offset, which is what we might intuitively expect. This is because the

conversion from 𝐷𝑠 to ∆𝜌 depends on 𝑁2, so the stratification plays an important

role in determining ∆𝜌. An example of this can be seen in Figs. 3-6c and 3-6i. The

former simulation has a much deeper 𝐷𝑠 of over 250 m and a ∆𝜌 of about 0.15 kgm−3

(Fig. 3-6c), while the latter case has a shallower 𝐷𝑠 of about 140 m and a much larger

∆𝜌 of approximately 0.8 kgm−3 (Fig. 3-6i).

To more quantitatively assess the agreement between the “true” tracer-estimated

source depth and Eq. (3.5), we compare the range of 𝐷𝑠 calculated from the model

against the theoretical predictions. Figure 3-7 is a scatter plot showing the median

source depth from tracers with error bars denoting the 10th and 90th percentiles. The

1:1 linear regression line representing perfect agreement between Eq. (3.5) and the

tracer-calculated 𝐷𝑠 is shown and it has a correlation coefficient of 𝑟2 = 0.93. The 𝑟2

value is calculated for the nine experiments that are initialized with a constant 𝑁2

(Table 3.1), which are the black points in Fig. 3-7. Not only is there good correlation

between the modeled and predicted 𝐷𝑠–which gives us confidence in the 1/2 power
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Figure 3-6: Surface isopycnals (black contours) and source depth (color) in each grid
point for a snapshot in time in each of the nine main simulations with constant
stratification (Tab. 3.1). The source depth is calculated from tracers and averaged in
the top 3 grid cells representing the upper 11.7 m of the ocean, and the day from which
the snapshot is taken is midpoint of the 20-day analysis period for each simulation.
The isopycnal interval is 0.05 kgm−3.

law relation–but Eq. (3.5) also captures the right magnitude of the source depth.

The mean and standard deviation of the absolute error is 11.88± 8.84 m. The source

depth in our simulations range from 50–280 m, so an average error of about ten meters

makes Eq. (3.5) sufficient for order-of-magnitude estimates.

There are two outliers on the lower left of Fig. 3-7 with 𝐷𝑠 ∼ 60 m that are higher

than predicted and do not fall on the 1:1 line very well. These points correspond

to the lowW_medN and lowW_highN simulations (Table 3.1), which have predicted

source depths of 48 m and 42 m, respectively, according to Eq. (3.5). The predicted

source depths for these two experiments turn out to be very close to the Ekman depth

𝛿𝐸 from Eq. (3.7), whose value is 𝛿𝐸 = 33 m with a transition depth of ∆ = 16.5 m.

Thus, these two experiments may be examples in which the turbulent surface mixed

layer given by Eq. 3.7 is actually too deep, and as a result, the source depth in the

model is deepened due to mixing.
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Figure 3-7: “True” source depth calculated from tracers in the numerical model (𝐷𝑠)
compared to the scaling relation in Eq. (3.5) 𝐶𝑠(

𝜏
𝜌0𝑁𝑓

)1/2. The median value is shown
with error bars denoting the 10th and 90th percentiles, and the gray line shows the
1:1 line. 𝜌0 is taken to be constant reference density of 1027 kg/m3.

For completeness we can conduct the same comparisons between the true density

offset in the model and predictions of Eq. (3.6), which is shown in Fig. 3-8. Similar

to Fig. 3-7, the points closely follow the 1:1 line and the correlation coefficient is

very high with 𝑟2 = 0.95. Again, the 𝑟2 value is calculated only for the black points

which are the experiments with a constant initial 𝑁2. We should not expect 𝑟2 to

be the same for source depth and density offset because these two quantities are

not simply related by a scalar; instead, we scale 𝐷𝑠 by a variable 𝑁2 to obtain

∆𝜌 (because ∆𝜌 = −𝜌0
𝑔
𝑁2𝐷𝑠). The higher 𝑟2 is an artifact of this transformation,

and should not be interpreted as the density offset scaling relation being superior to

the source depth scaling. The mean average error and standard deviation for ∆𝜌 is

0.055 ± 0.057 kgm−3, while ∆𝜌 ranges from 0.07 to 2 kgm−3. So again, Eq. (3.6)

seems appropriate for order-of-magnitude scaling purposes.
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Figure 3-8: Density offset expressed as the difference in density between the surface
and the upwelled water ∆𝜌 calculated from the numerical model compared to the
scaling relation in Eq. (3.6) 𝐶𝑠

𝑔
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𝑓
)1/2 𝑁3/2. The median value is shown with error

bars denoting the 10th and 90th percentiles, and the gray line shows the 1:1 line. 𝜌0
is taken to be constant reference density of 1027 kg/m3.

3.4.3 More realistic 𝑁 2 profiles

So far, we have presented results from simulations initialized with a uniform vertical

density gradient. Typically in the ocean, 𝑁2 is small and uniform in the surface

mixed layer, reaches a peak at the base of the mixed layer, and then decays below

that to become small in the interior. This raises the question of whether the scaling

relations hold for more realistic 𝑁2 profile shapes. How much does the shape of the

initial 𝑁2 profile matter? In the case of non-uniform stratification, what value of 𝑁2

should one use in Eq. (3.5)? To investigate this, we run three additional simulations

whose initial 𝑁2 profiles are more realistic (Fig. 3-9). We experiment with varying

the peak 𝑁2 value and the mixed layer depth, but we maintain the same the average

stratification in the upper 250 m at 10−4 s−2 (Fig. 3-9). This way, the depth-integrated

𝑁2 in the upper 250 m–which is just the density difference between the surface and

250 m–is the same. This allows us to compare the effects of only varying the shape

of the density profiles, while holding the total stratification constant. In addition,
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the depth-averaged stratification over the full 500 m depth is about 5.5 × 10−5 s−2

for the three simulations, which is the same as the medium stratification experiments

(Table 3.1). A constant wind forcing of 𝜏 = 0.1 Nm−2 is used for all three simulations,

so these results are meant to be compared to the highW_highN and highW_medN

experiments (Table 3.1).
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Figure 3-9: Initial potential density profiles minus 1000 kgm−3 (𝜎, left) and corre-
sponding 𝑁2 profiles (right) for the three experiments that have a non-constant initial
stratification (see Table 3.1). An Argo density profile from the Arabian Sea in July
2017 is also plotted in the gray dashed line to serve as an example of a realistic density
profile.

The source depth and density contours for a snapshot in each of the three sim-

ulations are shown in Fig. 3-10. There is not a drastic difference in source depth

between the small peak and deep ML experiments in Fig. 3-10 and Fig. 3-6f and i,

which has the same wind stress and average stratification. However, the large peak

simulation has a noticeably deeper source depth. Testing the tracer-calculated source

depths against Eq. (3.5) with 𝑁2 = 10−4 s−2 and 𝑁2 = 5.5 × 10−5 s−2 shows that a

better agreement is achieved for the small peak and deep ML experiments when the

higher stratification value is used. This hints that it is the total stratification in the
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upper ocean above the source depth that should be used in the scaling relation, and

not the full water-column integrated stratification. After all, it is the upper ocean

stratification that is relevant for the generation of available potential energy through

upwelling and subsequent baroclinic instabilities.
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Figure 3-10: Same as Fig. 3-6 except the three simulations shown have non-uniform
initial stratification profiles and the same wind stress of 0.1 Nm−2 (see Tab. 3.1).

The gray dots in Fig. 3-7 show the range of source depths from these three ex-

periments and the scaling-predicted value using the average initial stratification in

the upper 250 m. The small peak and deep ML source depths are clustered very

closely around the point corresponding to the highW_highN experiment. The me-

dian source depths of the small peak, deep ML, and highW_highN simulations are

126.51 m, 131.82 m, and 124.25 m respectively, which are all within the range of

the error bars. The large peak simulation has a deeper 𝐷𝑠 of 184.36 m, although

its error bars slightly overlaps with the other simulations (Fig. 3-7). Similarly, the

density offsets of the small peak and deep ML experiments are close to that of the

highW_highN simulation (Fig. 3-8 gray dots), while the large peak experiment has a

higher density offset value.

To understand why the large peak experiment has a deeper source depth, we

can look at the nearshore density structure of these three simulations during the

analysis period (Fig. 3-11). Despite being initialized with the same depth-integrated

stratification, the nearshore stratification after the spin-up phase is actually weakest

in the large peak experiment. This is because the strong initial stratification in the

large peak experiment is quickly erased by the wind-driven mixing in the model, and

the large peak case has the weakest initial stratification below the mixed layer (Fig. 3-
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9). Thus, the stratification that was actually present to energize the baroclinic eddies

is weaker than in simulations with higher stratification below the wind-driven mixed

layer. In this contrived experiment where depth-integrated 𝑁2 was held constant,

altering the mixed layer depth did not affect the source depth, but changing the 𝑁2

peak did significantly affect 𝐷𝑠. The effects of the initial vertical density structure is

an interesting question to investigate further in future studies.

Figure 3-11: Nearshore density profiles minus 1000 kgm−3 (𝜎, left) and corresponding
𝑁2 profiles (right) during period analyzed for source depth from the three experiments
that have a non-constant initial stratification (see Table 3.1). Profiles for each sim-
ulation are taken on the days indicated in Fig. 3-10 at the location 𝑥=48 km and
𝑦=20 km.

3.5 Discussion

After proposing a general scaling relation for the source depth of upwelled water and

verifying it with numerical experiments, we can revisit the original motivating case

of the Arabian Sea and Bay of Bengal as an example of how Eq. (3.5) may be useful

in understanding what drives the different upwelling responses. The climatological

southwesterly wind stress for July in Fig. 3-1b-c is 𝜏 = 0.20 Nm−2 in the AS and
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𝜏 = 0.07 Nm−2 in the BoB. The depth-averaged climatological 𝑁2 in the upper 250 m

is 1.1× 10−4 s−2 and 2.1× 10−4 s−2 in the western AS and BoB, respectively. Taking

𝑓 for the latitude 15∘N and 𝜌0 = 1027 kg m−3, Eq. 3.5 yields 𝐷𝑠 = 181 m in the AS

and 𝐷𝑠 = 91 m in the BoB. Converting source depth to the density offset yields ∆𝜌 =

2.1 kgm−3 in the AS and ∆𝜌 = 2.0 kgm−3 for the BoB. Unsurprisingly, the source

depth in the BoB is considerably shallower than the AS, which is consistent with the

colder SST in the AS compared to BoB (Fig. 3-1). However, SST is not reflective of

the similar density offset in both basins because the density in the BoB is primarily

salinity driven due to large freshwater inputs from rivers and precipitation (?). But

beyond that, Eq. (3.5) allows us to quantify the relative importance of the different

wind forcing and stratification on the difference in 𝐷𝑠 between the AS and BoB. For

instance, using Eq. (3.5) we can estimate that if the AS wind stress were reduced

to a third of its value, to be equal to the BoB wind stress, it would translate into

a 41% reduction in source depth. If instead the AS stratification was doubled to

match the BoB (but the AS maintained its original wind stress), it would result

in a 15% reduction in source depth. The difference in wind stress plays a larger

role in explaining the difference in upwelling 𝐷𝑠 between the AS and BoB, but the

stratification also plays a significant role.

Furthermore, a potential implication of a shallower source depth in the BoB is a

positive feedback cycle involving the Southwest Monsoon. Shallow 𝐷𝑠 means higher

SST, which leads to more convection and precipitation over the Bay of Bengal (Izumo

et al. 2008). The increased precipitation further enhances stratification (or at least

counteracts the decrease in 𝑁2 due to upwelling) in the BoB by providing a layer

of buoyant freshwater at the surface. Lastly, the persistent strong stratification con-

tributes to a shallow upwelling source depth. McGowan et al. (2003) suggested a sim-

ilar positive feedback in the California Current System where ocean warming leads

to increased stratification and suppressed upwelling or shallower source depth, which

further maintains high stratification. This is currently speculative, but it is interest-

ing to note that in Fig. 3-1c, 𝑁2 decreases by 0.3× 10−4 s−2 from May to August in

the AS as a result of strong coastal upwelling, but in the BoB 𝑁2 only decreases by
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0.1× 10−4 s−2 in the same time period. The maintenance of the strong stratification

in the BoB might be an example of this stratification-source depth feedback at play.

While this work is originally motivated by observations of the Arabian Sea and

Bay of Bengal, the theory developed here is general and can be applied to study other

coastal upwelling regions such as the EBUS, and assess how they might change with

global warming. There is abundant literature on how alongshore winds and upwelling

intensity will change under future warming scenarios (e.g. Bakun 1990; Sydeman et al.

2014; Rykaczewski et al. 2015; Wang et al. 2015; deCastro et al. 2016), and there is a

seasonal and latitudinal dependence on upwelling trends, with more intensification of

summertime upwelling-favorable winds at higher latitudes (Rykaczewski et al. 2015).

We might expect regions of increased upwelling intensity to experience greater primary

production, but the effect is partially countered and mitigated by strong increases in

stratification as a result of a warming oceans (deCastro et al. 2016; Lorenzo et al.

2005; Auad et al. 2006). For instance, Jacox et al. (2015a) found a strong positive

correlation between upwelling winds and nitrate concentration (indicative of source

depth) and a weaker negative correlation between increased heat flux and nitrate

concentration, which is qualitatively consistent with our findings on how wind and

stratification impacts source depth. Our work here provides an alternative theoretical

method to quantitatively compare the relative effects of changing winds and changing

stratification on upwelling source depth.

Additionally, this study has implications for the biological productivity of coastal

upwelling regions. Observational and modeling studies have shown that intensifying

upwelling-favorable winds do not necessarily correlate with increased primary pro-

ductivity (e.g. Roemmich and McGowan 1995; Renault et al. 2016), which highlights

the necessity of considering other factors that affect nutrient supply and productivity.

For example, in the well-studied California Current System, long term warming and

increased stratification trends have been observed and linked to a shallower source

depth (McGowan et al. 2003; Bograd and Lynn 2003), diminished vertical fluxes of

nutrients to the upper ocean (Lorenzo et al. 2005; Palacios et al. 2004), and signifi-

cant ecosystem changes (McGowan et al. 2003). Our theory is consistent with these
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findings, and our contribution is to quantify and demonstrate a mechanism by which

stratification alters the source depth. In particular, since nitrate is known to be

correlated with temperature or density (e.g. Omand and Mahadevan 2013; Palacios

et al. 2013), the density offset given by Eq. (3.6) could be a useful metric for studying

nutrient upwelling, provided that a density-nitrate relationship is known. However

to fully assess biological impacts, it is important to also consider other factors. For

example, reduced upwelling may be compensated by enhanced nutrients at depth

(Rykaczewski and Dunne 2010; Xiu et al. 2018), nutrients and phytoplankton can be

advected offshore and subducted (Gruber et al. 2011), and plankton biomass may not

necessarily respond to nutrient changes if there are other controls such as ecosystem

food web dynamics (Xiu et al. 2018).

One note is that when 𝜓𝑤 and 𝜓𝑒 fully balance, there is no more uplift of isopycnals.

This does not necessarily mean that there is zero upwelling nutrient flux since there

can still be upwelling of nutrients along sloping isopycnals (Freilich and Mahadevan

2019). Freilich and Mahadevan (2019) developed the following scaling for the ratio

of along-isopycnal vertical velocity 𝑤𝑖𝑠𝑜 to total vertical velocity: 𝑤𝑖𝑠𝑜

𝑤
∼ 𝑀2𝐿

𝑁2𝐻
, where

𝐻/𝐿 is the aspect ratio and 𝑀2/𝑁2 is the isopycnal slope. We apply this scaling

to our experiments using the following parameters: 𝐻 ∼ 100 m is the source depth,

𝐿 ∼ 105 m, 𝑁2 ∼ 10−4 s−2, and 𝑀2 = 𝑏𝑦 = 𝑔
𝐿

Δ𝜌
𝜌0

∼ 10−7 s−2 (with ∆𝜌 = 1 kg m−3).

This yields 𝑤𝑖𝑠𝑜/𝑤 = 1, in other words, all the upwelling is indeed occurring along

isocpycnals and there is no more upwelling due to isopycnal uplift as expected. In

this case, the source density will still be a useful consideration.

It is important to remember that our scaling relations, Eqs. (3.5) and (3.6), are

tested using idealized numerical experiments which neglect several factors. To begin,

we force the model with a constant wind that blows for months, as a result of which

the surface along-shore current in the model is stronger than in observations. In

reality, the wind is intermittent and varies on a time scale of days with strong bursts

and weak periods. Our scaling does not account for variable 𝜏 in time or space, but

is meant to represent the effects of the average alongshore wind stress over the course

of an upwelling season. However, in the case of highly intermittent winds, it may
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not be appropriate to use the time-averaged wind stress in the scaling relationship,

because there is a time for spin up and equilibration. If the wind changes before the

system equilibrates, the wind event’s impact on upwelling source depth may not be

fully realized. Additional work is needed to explore the effect of highly intermittent

winds.

Furthermore, this work does not describe the increase in source depth over the

course of days, such as when upwelling-favorable winds commence at the beginning

of the upwelling season. Equations. (3.5) and (3.6) instead are meant to estimate 𝐷𝑠

and ∆𝜌 over multiple weeks during the upwelling season, where we can assume an ap-

proximate balance of the mean 𝜓𝑤 and 𝜓𝑒 in that time span. Additionally, this work

is focused on the near-shore region where Ekman transport dominates, and we do not

consider the effects of wind-stress curl driven upwelling, though Jacox and Edwards

(2012) found that the shape of the cross-shore wind profile did have an effect on the

upwelling source depth. Capet et al. (2004) also showed that different cross-shore

wind profiles impacted the patterns of upwelling circulation, surface temperature,

and biogeochemistry off the Californian coast. Another limitation is that we do not

have any geostrophic onshore transport or poleward undercurrent because there is no

alongshore pressure gradient in our model, all of which would impact the upwelling

circulation (Marchesiello and Estrade 2010). Furthermore, we present a source depth

scaling based on local forcing, but remote forcing also plays an important role in set-

ting surface variations in upwelling regions (Frischknecht et al. 2015). Thus we expect

that source depth can also be affected by large scale climate variability modes such

as the El Niño-Southern Oscillation (Jacox et al. 2015b), Pacific Decadal Oscillation

(Chhak and Lorenzo 2007) and the North Pacific Gyre Oscillation (Di Lorenzo et al.

2008).

Lastly, the sloping topography, which is not addressed here, would result in some

onshore transport along the bottom boundary layer (Lentz and Chapman 2004; Jacox

and Edwards 2011, 2012) and also alter the eddy dynamics (Brink 2016). In addition,

topographic variations such as canyons, capes, islands, banks, and headlands would

also strongly affect the regional dynamics (Pitcher et al. 2010). The inclusion of
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topography would require re-working the scaling relation to include bottom stress as

another mechanism for balancing the wind, and this is beyond the scope of this study

but is an important avenue for future research.

3.6 Conclusion

We investigate the role of stratification and alongshore wind stress on the source

depth in a coastal upwelling region. To our knowledge, there has been no study

to date on the source depth in coastal upwelling regions that considers the role of

submesoscale eddies. We present a scaling relation for the source depth at dynamic

equilibrium that depends on a balance between the wind-driven Ekman circulation

and the eddy restratifying overturning circulation which shows that the source depth

𝐷𝑠 = 𝐶𝑠(
𝜏

𝜌0𝑁𝑓
)1/2. This can be converted to a density offset scaling by considering the

change in density from the surface to the source depth: ∆𝜌 = 𝐶𝑠

𝑔
(𝜌0𝜏

𝑓
)1/2𝑁3/2. The

result of increasing source depth with weaker stratification is qualitatively consistent

with previous studies (Jacox and Edwards 2011, 2012; Oerder et al. 2015), but now we

are able to quantify the effects of wind stress and stratification on the source depth.

A main takeaway from our study is that both the source depth and the density offset

depends nonlinearly on the stratification 𝑁 and wind stress, and they contribute

equally to the source depth. Thus, as stratification increases more drastically in a

warming planet, the stratification will play a more important role in decreasing the

source depth. That may have implications for increasing SST, which has a positive

feedback, and in changing nutrient supply for primary production, which are areas of

future study.
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Datasets for Fig. 3-1 are described in Dee et al. (2011) and Schmidtko et al. (2013),

and they are accessible here https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era-interim, https://www.pmel.noaa.gov/mimoc/. Source code to repro-

duce the model runs can be found at https://doi.org/10.5281/zenodo.4757609. Col-

ormaps are from Thyng et al. (2016).
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3.A Appendix

Supporting Information for “How the source depth of coastal upwelling relates to

stratification and wind”

3.A.1 EKE

Here we provide additional information to illustrate how we choose the analysis period

for the different simulations. The depth-averaged eddy kinetic energy 𝐸𝐾𝐸 and

source depth 𝐷𝑠 is plotted with time for all the model runs analyzed, and the 20-day

analysis period chosen for each simulation is shown (Figs. 3-12, 3-13). Details on how

𝐸𝐾𝐸 and 𝐷𝑠 is calculated and how the analysis period is identified can be found in

Sec. 3.2 of the main text. The analysis period is the 20-day period over which the

change in 𝐸𝐾𝐸 is minimized.

3.A.2 Frontal width

Fig. 3-14 compares the frontal width calculated from the Rossby radius as 4𝑁𝐷𝑠/𝑓

and the surface width 𝐿 of the coastal upwelling front diagnosed independently from

the model simulations. To obtain 𝐿 from the model output, we take the alongshore

average of the surface density field during the identified 20-day period of minimal

𝐸𝐾𝐸 change. This leaves us with a mean cross-shore surface density profile. The

width 𝐿 is identified as the offshore distance where the density gradient becomes

nearly zero. More specifically, we identify where the density changes by less than a

threshold of 0.001 kg/m3/km for at least the next 20 consecutive km. This method for

estimating 𝐿 is adapted from similar, but more complex, gradient-threshold methods

for identifying fronts and front widths (Oerder et al. 2018). We choose this criteria to

yield front widths that qualitatively agree with what we would identify by eye from

looking at the surface fields. The values of 𝐿 range from 56 to 134 km, which are

consistent with the range of values obtained from 𝐿 = 4𝑁𝐷𝑠/𝑓 .
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Figure 3-12: Eddy kinetic energy (𝐸𝐾𝐸, black line), alongshore-mean kinetic energy
(dashed gray), and source depth (𝐷𝑠, blue line) with time in each of the nine sim-
ulations with constant 𝑁2. The kinetic energy is calculated as a sum over all grid
cells within a distance 150 km from the coast. The 20 day period with the minimum
change in 𝐸𝐾𝐸 that was used for calculating the source depth is highlighted in gray.
Note the horizontal and vertical axes of each simulation are different.

small peak large peak deep ML

Figure 3-13: Same as Fig. 3-12, but for the three simulations initialized with non-
constant 𝑁2 profiles.
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Figure 3-14: Comparison of the diagnosed surface width of the coastal upwelling front
with the Rossby radius given by 4𝑁𝐷𝑠/𝑓 for the nine main simulations with constant
initial 𝑁2. Points are colored by the wind forcing.
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Chapter 4

Vertical velocity diagnosed from sur-

face data with machine learning

Abstract

Submesoscale vertical velocities 𝑤 are important for the oceanic transport of heat
and biogeochemical properties, but observing 𝑤 in-situ is challenging. New remote
sensing technologies of horizontal surface velocity 𝑢ℎ at 𝑂(1) km resolution can re-
solve surface submesoscale dynamics and offer promise for diagnosing 𝑤 subsurface.
Using machine learning (ML) models, we examine relationships between the three-
dimensional 𝑤 field and remotely observable surface variables such as 𝑢ℎ, density, and
their horizontal gradients. We evaluate the ML models’ sensitivities to different in-
puts, spatial resolution of surface fields, the addition of noise, and information about
the subsurface density. We find that surface data is sufficient for reconstructing the
3D 𝑤 field, and having high resolution 𝑢ℎ with minimal errors is crucial for accurate 𝑤
predictions. This highlights the importance of finer scale 𝑢ℎ measurements and sug-
gest that data-driven methods may be effective tools for linking surface observations
with vertical velocity and transport subsurface.
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Plain Language Summary

Vertical velocities 𝑤 are associated with ocean currents that move towards or away

from the ocean surface and are important for connecting the surface and deep ocean.

It is extremely difficult to measure 𝑤 directly, but there exists many measurements of

other variables that are related to 𝑤, such as horizontal currents that move along the

surface in the north-south or east-west directions. Thus, we investigate how feasible

it is to infer 𝑤 from other more easily measurable data. We compare 3 machine

learning (ML) methods to see which is best at finding relationships between more

easily measurable variables (the input data) and 𝑤 at different depths. Furthermore,

we test how using different input variables, adding noise to the input data, or changing

the spatial resolution of the input data, impact the 𝑤 predictions. Our results show

that ML models are successful at reconstructing the 3D 𝑤 field using high-resolution

(∼1 km) surface data, and in particular, surface horizontal velocities are the most

important to include. This study shows that ML methods are promising for relating

remotely-sensed surface measurements of the ocean to vertical velocities below the

surface, which can help provide us with a better understanding of the 3D ocean.
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4.1 Introduction

Resolving oceanic vertical velocities 𝑤 at the submesoscale, defined here as 𝒪(1-

10) km spatial scales and 𝒪(1) Rossby number, is important for the vertical transport

of heat, carbon, and nutrients between the surface and deep ocean (e.g. Su et al.

2018; Ruiz et al. 2019; Uchida et al. 2019). Directly measuring 𝑤 is difficult as 𝑤 is

several orders of magnitude smaller than the horizontal velocity 𝑢ℎ, and 𝑤 is noisy

since it includes the wave field and turbulent fluctuations. However, recent studies

suggest it may be possible to infer 𝑤 at the submesoscale from surface signatures

since strong up- and down-welling are known to be associated with surface fronts,

convergence, and cyclonic vorticity (D’Asaro et al. 2018; Ruiz et al. 2019; Tarry et al.

2021; Freilich and Mahadevan 2021). We also expect that surface 𝑢ℎ data will continue

to improve in resolution and accuracy, leading to better estimates of divergence and

vorticity at smaller scales. For instance, starting in 2023, the Surface Water and Ocean

Topography (SWOT) mission plans to provide global surface horizontal geostrophic

velocities down to ∼15 km, the highest resolution to date (Fu and Ubelmann 2014;

Wang et al. 2018). And the NASA EVS-3 Submesoscale Ocean Dynamics Experiment

(S-MODE) is utilizing Doppler Scatterometry on aircraft to measure surface 𝑢ℎ at

<1 km resolution (Farrar et al. 2020). The latter methodology is also the basis for

a proposed future mission that would remotely sense waves and current velocities

that are not just geostrophic, at even higher resolution than SWOT (Rodríguez et al.

2019).

To leverage these advances in finer-scale surface observations, we explore the fea-

sibility of using data-driven methods to link surface fields with subsurface 𝑤. Ex-

isting techniques, such as surface quasigeostrophic (SQG) methods, diagnose the 3D

mesoscale horizontal and vertical velocities from sea surface data using sea surface

temperature (density) and/or sea surface height (e.g. LaCasce and Mahadevan 2006;

Lapeyre and Klein 2006; Isern-Fontanet et al. 2006, 2008; Wang et al. 2013; Qiu

et al. 2020). However, these methods assume a quasi-geostrophic framework with

Rossby number ≪ 1, an assumption that does not hold at the submesoscale. More-
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over, SQG methods mainly capture the balanced part of 𝑤 and perform poorly in the

surface mixed layer where unbalanced submesoscale dynamics dominate (Qiu et al.

2020; Uchida et al. 2019). This highlights a need to explore alternative methods for

diagnosing the unbalanced, submesoscale 𝑤.

One simple approach, based on the incompressibility of seawater, is to depth-

integrate the surface divergence of 𝑢ℎ. But this approach leads to errors that increase

with depth because the divergence of 𝑢ℎ is not constant with depth, especially below

the mixed layer. Hence the relationship between 𝑤 and the surface divergence of 𝑢ℎ

is more complex, nonlinear, and dependent on other variables.

Here, we utilize machine learning methods which are good at finding complex

nonlinear relationships from large data sets. They have been used in oceanography

to estimate horizontal currents at the surface (Sinha and Abernathey 2021) and at

depth (Chapman and Charantonis 2017; Bolton and Zanna 2019), among many other

applications (Sonnewald et al. 2021). Our goal is to test how well ML methods per-

form for estimating the 3D submesoscale 𝑤 field, which to our knowledge, has not

been done before. We train and compare the performance of three ML models: multi-

ple linear regression (MLR), random forest (RF), and convolutional neural networks

(CNN). In addition, we evaluate the sensitivity of 𝑤 predictions to data noise, spatial

resolution, and to different input data variables, to provide insight into the type and

quality of measurements needed for accurate estimations of 𝑤.

4.2 Methods

4.2.1 Training data

Since we lack measurements of the vertical velocity, the ML models are trained using

the output from an ensemble of numerical simulations generated with the Process

Study Ocean Model (PSOM), which solves the nonhydrostatic Bousinesq equations

(Mahadevan et al. 1996a,b). The model simulations, described in He and Mahadevan

(2021), represent a coastal upwelling front in a 500 m deep re-entrant channel that
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extends 96 km in the alongshore (𝑥) direction and 384 km in the cross-shore (𝑦) di-

rection. The horizontal grid resolution is 1 km, and there are 32 stretched vertical

levels ranging in thickness from 1 m at the surface to 36 m at the bottom. Nine

simulations with different combinations of alongshore wind stress and initial stratifi-

cation generate a wide range of dynamics that form a rich training set. More details

about the model can be found in the Supplementary Information and in He and Ma-

hadevan (2021). Each simulation starts from rest and is forced with an alongshore

wind stress that sets up an upwelling front at the eastern boundary. The upwelling

front undergoes baroclinic instability, to form meanders, eddies, and filaments that

support a range of vertical velocities (Fig. 4-1). The statistics of the modeled flow is

representative of submesoscale dynamics (Shcherbina et al. 2013); the vertical com-

ponent of the near surface relative vorticity is positively skewed and the distribution

of 𝑤 is negatively skewed. Snapshots from three of the simulations performed with

the same stratification but different strengths of the wind stress show the range and

distribution of 𝑤, as well as the vertical distribution of 𝑤 (Figure 4-1). We focus on

the upper 200 m, which is deeper than the mixed layer depth, as 𝑤 at the base of

the mixed layer is of interest for vertical transport. We limit our analysis to a region

extending 150 km from the coast (𝑦 < 150 km) which includes the upwelling front

and avoids the influence of the offshore boundary.

From each simulation in our ensemble, we select 5 snapshots—each separated by

5 days—of the model output to use for training and testing. We reserve 1 snapshot

(20% of the data) for the test set, and the remaining time slices (80% of the data)

are used for training. All the errors and results presented here are from the test set.

Different combinations of input variables are used to train the ML models, which is

detailed in Table 4.1. The inputs to the ML models include the surface density 𝜌,

and the horizontal surface velocities 𝑢ℎ = (𝑢, 𝑣) in the 𝑥 and 𝑦 direction, respectively.

We also calculate the surface divergence 𝛿 = 𝑢𝑥+ 𝑣𝑦, vorticity 𝜁 = 𝑣𝑥−𝑢𝑦, and cross-

shore density gradient 𝜌𝑦 to use as inputs, because 𝑤 is known to be related to those

quantities (D’Asaro et al. 2018; Ruiz et al. 2019; Tarry et al. 2021). The dominant

density gradient is in the cross-shore direction. In addition, we include the mixed
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Figure 4-1: Top row: Snapshots of vertical velocity 𝑤 from 3 simulations with high,
medium, and low wind forcing and an initial stratification of 𝑁2 = 10−4 ms−2. The
colorbar is skewed as downward velocities are stronger. Only a portion of the numer-
ical model domain that we focus on is shown, and black contours denote isopycnals
with an interval of 0.1 kg m−3. The direction of the wind stress is out of the page and
shown in (c). Middle row: Normalized histograms of 𝑤 in the upper 200 m from the
snapshots shown in the top row. The vertical scale is a log axis and the horizontal
scale differs. Bottom row: Root-mean-square (RMS) profiles of 𝑤 (blue line) from
the same snapshots in the top row. The horizontal lines denote the median mixed
layer depth, with the interquartile ranges shaded in gray.
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layer depth MLD, and the peak stratification below the mixed layer 𝑁2, to test the

importance of including information about the water column structure. To evaluate

sensitivity to noisy data, we add random noise at different levels (1%, 5%, 10%) to 𝑢ℎ

and re-calculate 𝛿 and 𝜁 from the noisy velocities. The density is kept noise-free, as

we expect errors in remotely sensed surface temperature to be smaller than in surface

velocity. We also generate lower-resolution data by coarsening 𝑢 and 𝑣 from 1 km

to 5 km, 10 km, and 15 km through spatial averaging, and then use the coarse 𝑢ℎ

fields to calculate 𝛿 and 𝜁 (see Supplementary Information for more details). The

output we are trying to predict is the 3D vertical velocity at the same instant in time.

For simplicity, we focus on predicting the full 𝑤, but there are many processes that

contribute to the vertical velocity field and 𝑤 can be decomposed into contributions

from waves, balanced geostrophic motions, or unbalanced and turbulent motions that

could be studied individually on depending on the application (Uchida et al. 2019;

Qiu et al. 2020).

4.2.2 Machine Learning models

We compare three types of ML models: Multiple Linear Regression (MLRs), Random

Forest (RFs), and Convolutional Neural Networks (CNNs). We summarize some

key differences between these models below. More information about specific model

implementation and parameters can be found in the Supporting Information. The

ML models and the inputs they are trained with are listed in Table 4.1.

For MLR and RF, we use the surface 𝑢, 𝑣, 𝜌, 𝛿, 𝜁, 𝜌𝑦, along with MLD, and peak

𝑁2 values at each grid point to predict 𝑤 in three dimensions. We fit separate MLR

and RF models, using a mean square error loss function for each depth level, with

the same inputs. This allows the ML models to learn different relationships for every

depth and enables us to assess the importance of each input variable as a function

of depth. The main difference between MLR and RF is that MLR assumes 𝑤 is a

linear function of the inputs, while RF allows 𝑤 to be a nonlinear function of the

input data since RF recursively splits the data into subsets and predicts the average

over a subset of the training data. One consideration when choosing these 2 models
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is that we need to explicitly provide the exact variables that we think are going to be

important for their predictions, such as the gradient quantities 𝛿, 𝜁, and 𝜌𝑦.

Additionally, since we expect spatial patterns to be important, we use CNNs

because they can efficiently consider a wider field of view. We use a relatively simple

CNN for the sake of demonstration in this paper that consists of 3 convolutional

layers followed by 2 fully connected layers, and the loss function is mean square error.

The CNN takes in a series of images as inputs, which are the 2D fields of 𝑢, 𝑣, 𝜌,

MLD, and peak 𝑁2. We choose the size of the input image to be 32 km × 32 km,

and intentionally do not include 𝛿, 𝜁, or 𝜌𝑦 since CNNs are designed to learn filters

that identify important patterns such as fronts and gradients to make its prediction.

Since CNNs are more computationally expensive to train, we do not train a separate

CNN for every depth. Instead, the final predicted output is the depth profile 𝑤(𝑧) at

the center of the input image.

4.3 Results

The first set of 𝑤 predictions are from the “MLR all,” “RF all,” and “CNN all” models,

which are trained with the original noise-free 1 km resolution data. Inputs include

both surface variables, and MLD and peak 𝑁2 information (Table 4.1). For all 3

methods, 3D snapshots of the predicted 𝑤 (Figure 4-2) closely resemble the true

model 𝑤 for the case of high winds in Fig. 4-1a. Qualitatively, all three ML models

capture the locations and coherence of the downwelling and upwelling regions, such

as the intense downwelling filaments at 𝑦 = 60 km and 𝑦 = 90 km. All three models

accurately predict enhanced velocities in the mixed layer, and weaker 𝑤 below the

mixed layer. Scatterplots of the predicted 𝑤 against the true 𝑤 in upper 200 m of the

entire test set that includes the ensemble of 9 simulations (middle row of Fig. 4-2)

offer a more objective comparison. Random Forest and MLR have comparable 𝑟2

with the true 𝑤 of 0.64 and 0.62, respectively, while CNN has the highest correlation

of 0.76. The CNN also does the best job of reconstructing the asymmetry in 𝑤, while

MLR and RF are more likely to under-predict the negative velocities (Fig. 4-2, d–f).

116



Table 4.1: Overview of the different ML models evaluated: Multiple Linear Regression
(MLR), Random Forest (RF), and Convolutional Neural Network (CNN). For the
MLR and RF, the inputs are values at a single grid point, while the CNN input
features are images with dimensions 32×32. For the experiments with noisy data,
only noise was applied to the 𝑢, 𝑣 velocities, and then divergence and vorticity were
calculated from the noisy velocity fields. Likewise in the experiments with coarsened
data, only the velocities are coarsened. The correlation coefficient 𝑟2 of each ML
model’s predicted 𝑤 with the true 𝑤 in the upper 200 m of the test set is shown as
an indication of its performance.

ML model Inputs 𝑟2 in upper 200 m
MLR all 𝑢, 𝑣, 𝛿, 𝜁, 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.62
MLR surface only 𝑢, 𝑣, 𝛿, 𝜁, 𝜌, 𝜌𝑦 0.62
MLR 1% noise noisy: 𝑢, 𝑣, 𝛿, 𝜁; original: 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.38
MLR 5% noise noisy: 𝑢, 𝑣, 𝛿, 𝜁; original: 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.22
MLR 10% noise noisy: 𝑢, 𝑣, 𝛿, 𝜁; original: 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.18
MLR coarse 5 km 5 km: 𝑢, 𝑣, 𝛿, 𝜁; 1 km:𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.34
MLR no grad 𝑢, 𝑣, 𝜌,𝑀𝐿𝐷,𝑁2 0.11
RF all 𝑢, 𝑣, 𝛿, 𝜁, 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.64
RF surface only 𝑢, 𝑣, 𝛿, 𝜁, 𝜌, 𝜌𝑦 0.62
RF 1% noise noisy: 𝑢, 𝑣, 𝛿, 𝜁; original: 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.34
RF 5% noise noisy: 𝑢, 𝑣, 𝛿, 𝜁; original: 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.23
RF 10% noise noisy: 𝑢, 𝑣, 𝛿, 𝜁; original: 𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.07
RF coarse 5 km 5 km: 𝑢, 𝑣, 𝛿, 𝜁; 1 km:𝜌, 𝜌𝑦,𝑀𝐿𝐷,𝑁2 0.31
RF no grad 𝑢, 𝑣, 𝜌,𝑀𝐿𝐷,𝑁2 -0.19
CNN all 𝑢, 𝑣, 𝜌,𝑀𝐿𝐷,𝑁2 0.76
CNN surface only 𝑢, 𝑣, 𝜌 0.73
CNN 1% noise noisy: 𝑢, 𝑣; original: 𝜌,𝑀𝐿𝐷,𝑁2 0.76
CNN 5% noise noisy: 𝑢, 𝑣; original: 𝜌,𝑀𝐿𝐷,𝑁2 0.74
CNN 10% noise noisy: 𝑢, 𝑣; original: 𝜌,𝑀𝐿𝐷,𝑁2 0.68
CNN coarse 5 km 5 km: 𝑢, 𝑣; original: 𝜌,𝑀𝐿𝐷,𝑁2 0.60
CNN coarse 10 km 10 km: 𝑢, 𝑣; original: 𝜌,𝑀𝐿𝐷,𝑁2 0.40
CNN coarse 15 km 15 km: 𝑢, 𝑣; original: 𝜌,𝑀𝐿𝐷,𝑁2 0.36
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Overall, at this stage, all 3 ML models do a decent job of reconstructing 𝑤 in the

upper 200 m.

4.3.1 Surface data only

To assess whether using surface data exclusively is sufficient for inferring 𝑤, we com-

pare the ML “all” models against the “surface only” models that do not include MLD

or peak 𝑁2 as inputs (Table 4.1). Surprisingly, we find that training with only sur-

face data results in a negligible decline in performance for RF (𝑟2 drops from 0.64 to

0.62) and CNN (𝑟2 drops from 0.76 to 0.73), while the MLR performance does not

change (Table 4.1). We also do not see a large difference in the depth-dependence

of errors between the “surface only” and “all” models in Fig. 4-2h and i, which show

the root-mean-square error (RMSE) normalized by RMS 𝑤, and 𝑟2 profiles across the

entire test set for the different ML models. We normalize the RMSE profile by the

RMS 𝑤 profile rather than compute the percent error at each individual grid point

and then average, because the latter results in dividing by zero in some locations.

Generally, RMSEs are relatively small above the mixed layer depth and there 𝑟2 is

high. Below the mixed layer depth, RMSEs become the same order of magnitude as

RMS 𝑤 and 𝑟2 becomes close to zero (Fig. 4-2 h,i). The solid profiles in Fig. 4-2h

and i can be grouped into two categories based on model type—the “CNN surface”

and “CNN all” models (pink and black lines) are very close together, while RF and

MLR (blue, cyan, and green lines) models have very similar depth-dependencies.

To explain why surface data is by itself sufficient, we can look at Fig. 4-2g, which

shows the “feature importance” as a function of depth. Feature importance is a metric

from RF that measures the usefulness of each input feature by the total decrease in

mean square error that results when the RF partitions the data based on that input.

This metric ranges from 0 to 1, where 1 means the variable is most important and 0

means the variable is not used at all. We see that above the mixed layer depth, whose

interquartile range is shaded in gray, divergence is by far the most important input

(Fig. 4-2g). Thus, removing unimportant variables like MLD and peak 𝑁2 does not

significantly impact model performance. Moreover, 𝑤 can be well approximated as a
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Figure 4-2: a) Snapshot of predicted 𝑤 from the RF all model (see Table 4.1) to be
compared with Fig. 4-1a, and scatterplot of predicted 𝑤 with true 𝑤 in the upper
200 m across the entire test set. The 1:1 line is shown. b and c) Same as a) but for
MLR all and CNN all models (Table 4.1). d) Feature importance for the RF all model.
e) Root-mean-square-error (RMSE) profiles across the entire test set, normalized by
the RMS 𝑤 at each depth. f) Correlation coefficient 𝑟2 of the entire test set with
depth. The median mixed layer depth is indicated by a horizontal gray line and
interquartile range is shaded in gray.
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linear function of surface divergence (and other variables), which explains why MLR

performs so well and the non-linearity gained from the RF is not very beneficial. For

comparison, we also show the results of depth-integrating the surface divergence in

the dashed gray line, which performs well only in the surface layer above 40 m, but

rapidly deteriorates below 50 m (Fig. 4-2e and f). Within 40 m of the surface, RF

and MLR outperform CNN because divergence is a good predictor of 𝑤 close to the

surface (Fig. 4-2d–f). However at, or below, the mixed layer depth, CNN surpasses

RF and MLR.

4.3.2 Noisy data

All results thus far make the unrealistic assumption of perfect data, so next we test

the sensitivity of the ML models when trained with noisy velocity data. Adding just

1% random noise to 𝑢ℎ drastically decreases the performance of MLR (𝑟2 drops from

0.62 to 0.38) and RF (𝑟2 drops from 0.64 to 0.34). But the CNN is not impacted

(𝑟2 remains 0.76) (Table 4.1). Even with a 10% noise level, the CNN still has a

𝑟2 of 0.68. Visually, the RF 𝑤 predictions are noticeably noisier and patchier than

the CNN predictions (Fig. 4-3a–d), and the RF predicted vertical velocities are also

weaker than the true 𝑤, while the CNN is closer to the correct magnitudes.

Figure 4-3e shows the normalized RMSE profiles for RF and CNN trained on data

with varying levels of noise. The errors for the MLR and RF models are nearly the

same, so only RF is shown for simplicity. Each color represents a noise level: the

solid lines represent CNNs and dashed lines represent RFs. When we add 1% noise

to the RF data, the normalized RMSE drastically increases from 0.09 to 0.69 near

the surface at 𝑧 = 10 m. Figure 4-3f shows the feature importance for the RF trained

with 1% noisy data. Comparing Fig. 4-3f with Fig. 4-2g, we see that the importance

of divergence drastically decreases when a small amount of noise is introduced in the

velocities, and the RF prioritizes using the higher-quality surface density and cross-

shore density gradient to compensate. But the loss of accurate divergence information

ultimately renders the RF (and MLR) model useless. The dashed purple line in Fig. 4-

3e shows the performance of a RF trained without any gradient-quantities used as
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Figure 4-3: a–d) Snapshots of 𝑤 from RF and CNN trained on velocity data with 1%
or 10% noise, to be compared with Fig. 4-1a. e) Profiles of the normalized RMSE of 𝑤
predictions from the CNN (solid line) and Random Forest (dashed line) for different
levels of data noise. f) Feature importance for the RF 1% noise. g, h) Snapshots
of 𝑤 from RF and CNN using coarsened 𝑢, 𝑣 velocities at 5 or 15 km resolution. i)
Normalized RMSE for RF and CNN predictions trained on different resolution data.
j) Feature importance for the RF 5 km model. See Table 4.1 for more information on
each model.
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inputs, and there is no skill at all. When the divergence, 𝛿, is degraded in quality by

noise, it is almost as if 𝛿 is not provided at all. In contrast, the CNN is much more

robust to noisy data (solid lines in Fig. 4-3e). The CNN RMSE increases a little with

higher noise levels, but not nearly as much as the RF errors. This main advantage

of CNN comes from its inherent feature of convolving filters with the input images,

and since the filters are learned during the training process, we hypothesize that the

CNN is learning to filter out the noise.

4.3.3 Coarse resolution

Another challenge of surface ocean data is that there is often a mismatch in spatial

resolution between different variables, such as surface horizontal velocities and sea

surface temperature (SST). Here, we test the effect of coarsening 𝑢ℎ from 1 km to

5 km, 10 km, and 15 km resolution on the prediction of 𝑤 at the scale of 1 km.

The 𝑢, 𝑣 fields at 1 km resolution are representative of Dopplerscatt (Rodríguez et al.

2018), the 5 km resolution of 𝑢, 𝑣 is close to that of HF Radar (Paduan and Washburn

2013), while 15 km will be closest to SWOT’s resolution (Fu and Ubelmann 2014).

The surface density is kept at 1 km resolution, representative of L2 SST satellite

data (Kilpatrick et al. 2015; Govekar et al. 2022).

Unsurprisingly, decreasing the spatial resolution of 𝑢ℎ yields worse predictions of

𝑤 (Fig. 4-3i, Table 4.1). For MLR and RF, coarsening 𝑢ℎ to 5 km causes 𝑟2 to drop

significantly from ∼0.6 to ∼0.3 (Table 4.1). The feature importance of the 5 km RF

model in Fig. 4-3j reveals that coarsening 𝑢 and 𝑣 strongly reduces the importance

of divergence, which is expected because calculating 𝛿 on a larger grid size results in

smaller values of 𝛿. We can also see the effect of a coarse resolution 𝛿 reflected in the

snapshot of 5 km RF predictions (Fig. 4-3g), which are visually pixelated and have

weaker 𝑤 magnitudes compared to Fig. 4-1a. The CNN is once again relatively less

sensitive, with 𝑟2 decreasing from 0.76 for 1 km resolution to 0.60, 0.40, and 0.36 for

resolutions of 5 km, 10 km, and 15 km, respectively (Table 4.1). Impressively, the

15 km CNN predictions manage to capture fine-scale patterns in 𝑤 (Fig. 4-3h), but

the magnitudes are under-predicted because the fine scale velocity gradients that are
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important for 𝑤 are missing when the data is coarsened.

4.4 Discussion and Conclusion

Data-driven methods can be used to diagnose submesoscale vertical velocities in the

upper ocean, within and just below the surface mixed layer. We find that exclusively

using surface data yields skillful predictions with 𝑟2 > 0.6 for all ML models tested,

and including subsurface information in the form of MLD and peak 𝑁2 results in

only marginal improvements. Though this may seem surprising, it is consistent with

known patterns of submesoscale dynamics where 𝑤 is related to the surface divergence,

vorticity, and density fronts (D’Asaro et al. 2018; Ruiz et al. 2019; Tarry et al. 2021;

Freilich and Mahadevan 2021). It is thus reassuring that MLR ad RF accurately

predict 𝑤 when provided with 𝛿, 𝜁, and 𝜌𝑦, but have no skill without those inputs.

Specifically, 𝛿 turns out to be by far the most important input. One advantage of

the CNN—the best performing model—over RF and MLR is that we do not need to

explicitly calculate 𝛿, 𝜁, or 𝜌𝑦 and can just provide surface 𝑢, 𝑣, 𝜌. This is because

by design, CNN learns to detect the important spatial patterns, including gradients,

for making its predictions. Overall, we find that ML methods—when provided with

accurate 1 km data—are successful at linking vertical velocities and surface patterns

associated with submesoscale dynamics.

However, it is unrealistic to have perfect observations, and 𝑢ℎ at 1 km resolution is

not yet commonplace. Adding a small 1–10% noise to the surface velocities results in

an extremely noisy divergence field, which is detrimental for RF and MLR. Methods

for predicting 𝑤 that rely directly on 𝛿 should thus carefully consider the errors in the

surface horizontal velocities. In contrast, the CNN is relatively insensitive to noisy

velocity data, which may be because it learns to filter out the noise during the training

process. A caveat is that we use white noise in our experiments, but realistically the

form of measurement errors is more complex. For example, the Dopplerscatt noise

structure has a radial dependence for each swath (Rodríguez et al. 2018), and further

work is needed with more realistic noise forms for different types of measurements.
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Additionally, we find that using coarser resolution 𝑢ℎ data degrades the performance

of all ML models, with CNN being the most robust. This is expected since it is diffi-

cult to resolve these finer-scale velocity gradients with coarser resolution 𝑢ℎ. Theses

results emphasize the importance of obtaining accurate, high-resolution surface 𝑢 and

𝑣 measurements for estimating submesoscale vertical transport in the future.

This study is meant to be a first assessment of the applicability of ML models for

learning physical relationships and vertical velocities in an idealized system without

surface waves and boundary layer turbulence. We find the results promising even with

relatively simple ML models, and expect that further advances can be made through

additional experimentation with other types of ML models and architectures. All of

the ML methods that are tested perform best near the surface, and errors increase with

depth. This is contrary to QG methods, which are more successful at depths further

below the mixed layer (Uchida et al. 2019; Qiu et al. 2020). Therefore, data-driven

methods could be a good complement to SQG methods, and using both together

could yield the best estimate of full water column vertical velocities. We think there

is potential for much exciting future work to be done to move towards applying these

methods to the real ocean.
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4.A Appendix

Supporting Information for “Vertical velocity diagnosed from surface data with ma-

chine learning”

Text S1. Numerical ocean model

The ensemble of simulations used in this study is described in He and Mahadevan

(2021), and we summarize more details about the simulations here. The model is

initialized with a linearly increasing density profile (so 𝑁2 is uniform throughout the

domain), and it starts from a state of rest with no initial horizontal gradients. A

constant wind stress 𝜏 is applied in the negative 𝑥 direction, which drives upwelling

at the coast located at 𝑦 = 0. To get a broader range of conditions for training, we

run a series of 9 experiments using different combinations of the initial stratification

and wind forcing. The initial stratification is set to either 10−5 s−2, 5.5 × 10−5 s−2,

and 10−4 s−2, and 𝜏 takes on values of 10−2 Nm−2, 5.5×10−2 Nm−2, and 10−1 Nm−2.

Each simulation is integrated forward in time with a time step of 108 s (for 𝜏𝑚𝑎𝑥 =

0.1 Nm−2) or 216 s (all other experiments) for at least 30 days after the upwelling

front becomes unstable and a submesoscale field develops. The total time period of

the simulations ranged from 60 days to 120 days, depending on how long it takes for

instabilities to emerge, and outputs are saved at 1-day intervals. A 20-day period

is selected from each simulation after the spin-up period, determined by looking at

the eddy kinetic energy and identifying the period where it is steady (see He and

Mahadevan (2021)). Figure 4-4 shows snapshots of the Rossby number given by

surface vorticity 𝜁 normalized by 𝑓 across the different simulations used. The Rossby

number is 𝒪(1) at the submesoscale and the vorticity is positively skewed, consistent

with observations (Shcherbina et al. 2013). Using these different simulations allows

us to train the ML model with a range of conditions to help prevent overfitting.

Text S2. Data pre-processing

The “surface” data taken from the simulations used for training are taken from

the top-most grid cell in the numerical model, whose thickness is 1 m and center is

located at a depth of 𝑧 = −0.5 m. Examples of the various input fields are shown in
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Figure 4-4: Snapshot of surface vorticity 𝜁 normalized by 𝑓 for the 9 simulations.

Fig. 4-5.

We first smooth all the model outputs to eliminate unphysical grid-scale numer-

ical noise. This is done using a fourth-order biharmonic operator which selectively

smooths out small scale noise while preserving the large scale features (Griffies and

Hallberg 2000). For any variable 𝑐, the result of the filtering computes 𝑐𝑛𝑒𝑤 =

𝑐𝑜𝑙𝑑 − 𝜅∇4𝑐𝑜𝑙𝑑, where 𝜅 = 0.062 m4.

Mixed layer depth, 𝑁2, and 𝜌

The mixed layer depth (MLD) is identified following Montégut et al. (2004), which

uses a threshold of 0.03 kgm−3 from the reference density at 10 dbar below the surface.

We then linearly interpolate between depth levels to determine the exact depth at

which the 0.03 kgm−3 threshold is reached. The 𝑁2 value used in this paper is taken

to be the maximum stratification value obtained below the MLD.

The surface density 𝜌 that we use is an anomaly from an offshore value taken at

𝑦 =150 km offshore. Furthermore, we tested using the full density gradient ∇𝜌 and

its magnitude to train MLR and RFs. But we found that the cross-shore component

of ∇𝜌, 𝜌𝑦, is the most useful because the upwelling front gradient is primary in the
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input X (surface) output Y (subsurface)

x103

Figure 4-5: Example of input fields and the corresponding output that the RF is
trained to predict. The far-left column, from top to the bottom, the inputs are
𝑢, 𝑣, 𝜌. The next column over, from top to bottom, the inputs are: 𝛿, 𝜁, |∇𝜌|. Then
in the 3rd column from the left, the final 2 inputs are MLD (top) and 𝑁2 (bottom).
The output we are trying to predict is the 3D 𝑤 field.

cross-shore direction, so that is the only component we retain.

Noise and coarsening

Different instruments have different forms of noise, which is important to consider

carefully, but we start by taking a simple approach to the noise. We also focus

on adding noise to just the velocities since (a) that is the more uncertain quantity

compared to the surface density or SST, (b) we find that the surface velocities are

the most important features. We start by re-writing 𝑢, 𝑣 in terms of their speed 𝐴

and angle from the coast 𝜃, so that 𝑢 = 𝐴𝑐𝑜𝑠(𝜃) and 𝑣 = 𝐴𝑠𝑖𝑛(𝜃). This mimics how

Dopplerscat and HF radar measure velocities—they do not measure 𝑢 and 𝑣 directly,

but instead first obtain 𝐴 and 𝜃 (Rodríguez et al. 2018; Paduan and Washburn 2013).

Then, we add some level of random noise to 𝐴 and 𝜃 by sampling from a uniform

distribution between 0 and 1, scaling by the noise level, and then convert back to 𝑢

and 𝑣. Furthermore, adding a small relative error to 𝑢 and 𝑣 results in a large relative

error in the divergence, since the divergence is orders of magnitude smaller than 𝑢, 𝑣

(Fig. 4-6). Given the dominance of the divergence importance in Fig. 2d, this stresses

the importance of having 𝑢, 𝑣 measurements with as little errors as possible.

To coarsen fields from the original 1 km resolution to a new resolution of 𝑘 km,
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Figure 4-6: Top row: Example of original error-free surface velocities and the diver-
gence field calculated from it. Bottom row: Same as top row, but now a 5% random
white noise has been added to 𝐴 and 𝜃, resulting in a noisy 𝑢, 𝑣 field. The divergence
field calculated from the noisy 𝑢, 𝑣 now has a very large relative error.

we divided the 2D field into 𝑘× 𝑘 km squares and replaced all the grids in that 𝑘× 𝑘

array with the median value in that array. We coarsen the 𝑢, 𝑣 fields in this manner

(see Fig. 4-7 for an example), and re-calculated divergence and vorticity from the

coarsened fields. As a result, the velocity gradients calculated from coarse 𝑢, 𝑣 fields

are weaker since we lose the extreme values, and the gradients are computed over a

larger distance.

Figure 4-7: Example of an input image to the CNN of 𝑢, 𝑣 at 1 km resolution (left)
and 5 km resolution (right).

Text S3. Machine Learning Models

Random Forest

Random Forest is an ensemble of decision trees, where each tree recursively parti-
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tions the data to minimize the mean square error (MSE) of its predictions (Breiman

2001; Hastie et al. 2001). Each tree is trained with a random bootstrapped subset of

the training data. The prediction for a tree is a mean over a subset of the training

data, and the prediction for the RF is a mean over all trees. Random Forest is a

common popular model because it is very quick to train, it is able to fit the data

well without overfitting, and it offers a level of interpretability as to how it makes its

decisions (Breiman 2001; Hastie et al. 2001). However, because RF can only partition

data, we need to explicitly provide it with the inputs that are important for making

its decision, such as the divergence and density gradient. Thus, RF requires some

prior knowledge about the system and/or experimentation with different inputs.

We train RF models using the RandomForestRegressor from the scikit-learn li-

brary (Pedregosa et al. 2011). The hyperparameters we varied are the number of

trees in the forest (𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, default = 10), the maximum depth of each tree

(𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ, default = none), the minimum number of samples in a node in order

to have a split (𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡, default = 2), and the minimum number of

samples in a leaf (𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 , default = 1). In general, changing the hyper-

parameters to make the decision trees more complex (e.g. increasing 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ, and

decreasing 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓) will result in a better fit to

the training data, but may risk overfitting to the training data which yields poor test

performance. Increasing 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 helps mitigates overfitting and improves test

set errors, but it increases training time since more trees need to be fit. In the end,

we found that the default settings of the hyperparameters yield the best performance

on our test set. Using all grid points within 150 km from the coast gives a total of

127,395 input-output pairs per snapshot in time, and we find that training with just

one snapshot of data is sufficient, and increasing the size of the training data set does

not improve performance on a test set. The RFs are trained using data from day 10

of the 20-day period selected from the ensemble, and the test set is taken from day 5.

Convolutional Neural Network

CNNs applies filters across the input images to identify features to help make its

prediction, and the weights of each pixel in the filters are learned during the training
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process. A benefit of CNN over RF is that we are able to have a much larger field

of view and can more efficiently consider neighboring grid points and look at spatial

information. However, CNNs are more difficult to train and interpret than RF.

The CNN we use has 3 convolutional layers followed by 2 fully connected layers.

The inputs to the CNN have dimensions 𝑛× 32× 32, where 𝑛 is the number of input

variables or features used. All inputs to the CNN are standardized by subtracting the

mean and dividing by the standard deviation for each variable. The first convolutional

filter is of size 5×5, which was chosen to allow the calculation of gradients (using 2nd

order centered-difference methods, or second derivatives can be calculated with 1st

order finite-difference methods). The remaining two convolutional layers have filters

of size 3 × 3. Each convolutional layer is followed by ReLU activations, and then a

max pool layer with kernel size 2 and stride of 2. The result of the third and final max

pool layer is then flattened and passed through 2 fully-connected layers, with rectified

linear (ReLU) (Xu et al. 2015) activation in the hidden layer and linear activation

in the final output layer. The final output is size 32× 1, so a prediction is made for

every vertical level. Because CNNs are more computationally expensive to train and

require more data, we use 250,560 training samples across 4 snapshots for training.

We train the CNN with Stochastic Gradient Descent using training data from days

0, 10, 15, and 20 of the 20 day period selected from the ensemble, while reserving day

5 for testing (the same day as RF for easier comparison). We use PyTorch to train

the CNNs, and experimented with different architectures by varying the number of

convolutional layers and fully connected layers, and the widths of each layer. We

tested different batch sizes, learning rates, and optimization schemes including Adam

and mini-batch stochastic gradient descent. The final hyperparameters used are a

batch size of 8, learning rate of 1e-2, and we trained for 20 epochs.

Text S4. Alternative methods for estimating 𝑤

We test two alternative methods for diagnosing 𝑤, namely depth-integrating the

surface divergence, and the interior + Surface Quasi Geostrophy (iSQG) method of

Wang et al. (2013). We find that these two methods did not perform as well in our

dataset, so the main focus of the paper is on the ML methods instead.

130



Surface divergence

From the continuity equation, we can relate the vertical gradient of vertical ve-

locity to the horizontal divergence:

𝜕𝑤

𝜕𝑧
= −

(︃
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

)︃
, (4.1)

where 𝑢, 𝑣 are the horizontal velocities in the 𝑥 and 𝑦 directions, respectively. If

the surface horizontal velocities 𝑢0, 𝑣0 are known, then we can calculate the surface

horizontal divergence and obtain 𝑤 at some depth 𝑧 by depth-integrating the surface

divergence:

𝑤(𝑧) = −
ˆ 𝑧

0

(︃
𝜕𝑢0
𝜕𝑥

+
𝜕𝑣0
𝜕𝑦

)︃
𝑑𝑧. (4.2)

This method assumes that the divergence is constant with depth and is equal to

the surface value, which is only a valid assumption above the mixed layer depth and

very close to the surface. The farther below the surface you move, the more likely this

assumption will break down and the worse the 𝑤 estimates will become. Furthermore,

Eq. (4.2) predicts that 𝑤 increases in magnitude linearly with depth, which after a

certain point breaks down since vertical velocities tend to be very small and near zero

in the interior ocean. See Fig. 4-8 for an example of 𝑤 diagnosed from this method.

Surface Quasi Geostrophy

The Surface Quasi Geostrophy (SQG) method is another way to reconstruct in-

terior vertical velocities from sea surface temperature (SST) or sea surface height

(SSH). There are a number of variations of the SQG method, and here we test out

iSQG since it makes use of both SSH and SST and includes information on interior

modes (Wang et al. 2013). These SQG methods typically assume small Rossby Num-

ber 𝑅𝑜 << 𝑂(1), which is not the case in our simulations since we have 𝑅𝑜 ≥ 1

(Fig. 4-4). Nevertheless, this has been a widely studied method in the past, so we

test it out on our data set.

Following Wang et al. (2013), we use the surface 2D buoyancy anomaly field

(anomaly is from the alongshore mean) to compute the 3D SQG streamfunction 𝜓𝑠𝑞𝑔,
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and we use an average buoyancy profile for the entire domain to obtain the interior

modes 𝜓𝑖𝑚. The total streamfunction is thus 𝜓𝑡𝑜𝑡 = 𝜓𝑖𝑚 + 𝜓𝑠𝑞𝑔. Then from 𝜓𝑡𝑜𝑡, we

can compute the reconstructed 3D buoyancy anomaly and horizontal velocity anomaly

fields, and then use those reconstructed 3D fields to invert the omega equation to get

the vertical velocity anomaly. Figure 4-8 shows the predicted 𝑤 using this method

(where we added back the mean fields to compare to the full 𝑤 in Fig. 1a), and it

does not capture the true 𝑤 field very well at all.

Figure 4-8: Predictions of 𝑤 to be compared with Fig. 1a using the surface divergence
method and the iSQG method.
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Chapter 5

Vertical transport of nutrients and phy-

toplankton in an upwelling system

Abstract

Eastern boundary upwelling systems (EBUS) are among the most productive marine
ecosystems due to the large influx of nutrients upwelled to the surface. Predicting
and quantifying this nutrient flux is important for understanding bottom-up con-
trols on primary production and how they might change in the future. In addition,
upwelling fronts experience instabilities, and eddies are ubiquitous, which leads to
additional eddy-driven vertical transport of nutrients and carbon. Using an idealized
coupled bio-physical model of an upwelling front forced with realistic time-varying
winds, we evaluate the importance of resolving the smaller scale eddy-driven fluxes
for the average vertical nutrient and carbon transport over the upwelling region. For
nutrient upwelling, Ekman transport theory is sufficient for diagnosing the spatially-
averaged flux provided that the source depth is correctly parameterized and allowed
to vary with time, and it is not necessary to resolve finer scale variability in 𝑤. How-
ever, diagnosing phytoplankton carbon biomass export is more difficult as that is not
well explained by Ekman upwelling or parameterzations of eddy-driven subduction
in this region. We show preliminary examples of how using the 3D 𝑤 field predicted
from a machine learning model, combined with surface observations of phytoplank-
ton biomass, may enable us to predict vertical carbon transport across the base of
the mixed layer from observations. This could lead to improved estimations of the
contribution of eddy-driven subduction to the biological carbon pump.
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5.1 Introduction

Eastern boundary upwelling systems (EBUS) experience sustained seasonal equator-

ward winds that drive coastal upwelling and supply nutrient-rich water to the euphotic

zone. This stimulates phytoplankton growth, which helps to fuel the rest of the ma-

rine food web. As a result, EBUS are among the most productive marine ecosystems,

supporting a disproportionate fraction of global fisheries despite their relatively small

global area (Chavez and Toggweiler 1995; Pauly and Christensen 1995). In addition,

upwelling of deep waters with higher DIC, and lower temperature and pH than sur-

rounding surface waters, can further impact organisms (Feely et al. 2008; Rühmkorff

et al. 2023) and air-sea CO2 exchange in EBUS (Friederich et al. 2008; Torres et al.

2002). Quantifying the upwelling-induced vertical transport of biogeochemical tracers

is thus important for monitoring and predicting ecosystem health.

The upwelling rate given by Ekman theory is solely based on the strength of the

alongshore wind stress, latitude, and density. Upwelling indices based on Ekman the-

ory have been in use for decades to estimate coastal upwelling intensity from wind

data, starting with the Bakun Index in 1973 (Bakun 1973). Since the Bakun Index,

there have been different indices created for upwelling intensity that accounts for addi-

tional dynamics such as wind-stress curl driven upwelling and the influence of onshore

geostrophic flow (Estrade et al. 2008; Marchesiello and Estrade 2010; Rossi et al. 2013;

Jacox et al. 2018). However, most indices only quantify the physical upwelling rate

and do not account for the properties of the upwelled water itself, which is crucial

when considering vertical transport of nutrients or any other tracer. For example,

for the same wind stress, nutrient flux can differ significantly depending on nitrate

concentration of the source waters for upwelling. The Biologically Effective Upwelling

Transport Index (BEUTI) is one such index that does account for nutrient content

(Jacox et al. 2018). Jacox et al. (2018) estimate the upward nitrate flux by multi-

plying the upwelling transport by the nitrate concentration at the base of the mixed

layer. They find that while BEUTI is positively correlated to the coastal upwelling

transport, the relationship is nonlinear, and that subsurface nitrate concentrations
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can exhibit significant variability which is important to take into account.

In addition to the large scale coastal upwelling dynamics, satellite observations

and models have revealed that mesoscale and submesoscale eddies and fronts are ubiq-

uitous in EBUS (Kahru et al. 2012; Capet et al. 2008). In recent years, resolving the

submesoscales in particular has gained more attention because the enhanced vertical

velocities 𝑤 at these smaller scales have been found to impact the vertical transport

of heat, carbon, and nutrients (e.g. Su et al. 2018; Omand et al. 2015; Ruiz et al. 2019;

Uchida et al. 2019). But, it is also suggested that while submesoscale fronts lead to

local hotspots of intense carbon subduction, they contribute very little to the annual

carbon flux on a regional scale due to compensation between upward and downward

fluxes (Resplandy et al. 2019). In coastal upwelling systems specifically, eddies and

fronts are also found to have myriad impacts on the distribution of nutrients and

carbon, such as locally injecting nutrients to stimulate primary production at a front

(Li et al. 2012), or enhancing eddy-driven carbon export (Stukel and Ducklow 2017).

On the other hand, higher levels of eddy activity have been associated with a decrease

in overall primary production and carbon export in the California Current System

(CCS) because eddies transport and subduct upwelled nitrate offshore (Gruber et al.

2011). This raises the question of what is the overall contribution of eddy-induced ver-

tical transport of nutrients and carbon in coastal upwelling systems, and how might

we begin to capture them with observations?

A major challenge to observing vertical transport at these smaller scales is the

difficulty of direct measurements of 𝑤, especially in capturing their temporal and

spatial variability. In Chapter 4, we demonstrated that it is possible to infer the 3D

submesoscale vertical velocity field from other more easily measurable quantities such

as surface horizontal velocities, density, and a density profile. Here, we are interested

in asking if having the fine scale vertical velocity field can help improve vertical

transport estimates of nutrients and carbon in an upwelling system. We currently

mostly rely on parameterizations for the spatially averaged vertical fluxes in a region.

Nutrient upwelling or new production is typically estimated as an upwelling transport

(consisting of Ekman transport and may include other contributions) multiplied by
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a nutrient concentration, as described above. Typically, the nutrient concentration

is determined by picking a source depth 𝐷𝑠, and using the nitrate concentration at

that given depth. There are various ways of determining the source depth, such

as using the mixed layer depth (Jacox et al. 2018), comparing offshore and inshore

profiles (Carr and Kearns 2003), or using a parameterization that is a function of the

wind and stratification (He and Mahadevan 2021). As for carbon export, a common

parameterization of eddy-driven carbon subduction flux ⟨𝑤′𝐶 ′⟩ is given by Omand

et al. (2015) as:

⟨𝑤′𝐶 ′⟩ = 𝜓𝑒
𝑀2

𝑁2

[𝑃𝑂𝐶]

𝐻
. (5.1)

The overturning streamfunction 𝜓𝑒 = 𝐶𝑒𝑀
2ℎ2𝑓−1 comes from a parameterization for

mixed layer eddies from Fox-Kemper et al. (2008), where 𝐶𝑒 = 0.8 is a constant, 𝑀2

is a characteristic lateral buoyancy gradient in the mixed layer, ℎ is the mixed layer

depth, and 𝑓 is the Coriolis parameter. In addition, 𝑀2/𝑁2 is the mean isopycnal

slope, [𝑃𝑂𝐶] is the spatial average of surface particulate organic carbon, and 𝐻 is

the euphotic depth.

Lastly, while the parameterizations above are useful for quantifying the average

vertical flux in a region, they cannot give a detailed picture on where exactly the

upwelling or export is happening. The spatial distribution can be important in some

cases since it can tell us where new production is happening, and it could be useful

to identify regions along a front where upwelling or downwelling of carbon export is

occurring. Thus, our motivating questions in this chapter are:

1) How useful is it to know the 3D 𝑤 field for diagnosing vertical transport? Does

resolving the fine-scale variability in 𝑤 and vertical transport change the average flux

estimates over a region, or are existing parameterizations sufficient?

2) Can we get a better estimate of the spatial variability of vertical fluxes by using

the 3D vertical velocity field?

We investigate these questions using an idealized bio-physical model where all the

fluxes are known. The models and methods are described in Sec. 5.2. We evaluate

the model, and present and discuss preliminary results in Sec. 5.3. Conclusions and
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future steps are outlined in Sec. 5.4.

5.2 Methods

5.2.1 Physical model

Our idealized model setup is similar to that of He and Mahadevan (2021), except here

it is based off of the California Upwelling System instead of the Arabian Sea and Bay

of Bengal. We simulate coastal upwelling on an 𝑓 -plane at a latitude of 35∘N using

the Process Study Ocean Model (PSOM), which solves the nonhydrostatic Bousinesq

equations (Mahadevan et al. 1996a,b). The model domain is a 500 m deep re-entrant

channel that extends 96 km in the alongshore (𝑥) direction and 384 km in the cross-

shore (𝑦) direction. The coast is located at 𝑦 = 0, and the horizontal grid resolution

is 1 km. In the vertical, there are 32 stretched levels ranging in thickness from 1 m

at the surface to 36 m at the bottom, and there is no bottom topography. Each

simulation starts from rest with a constant initial stratification of 𝑁2 = 10−4 s−2,

and is forced with a spatially uniform alongshore wind stress, so there is no upwelling

or downwelling driven by a wind-stress curl. A notable difference from the simulations

in He and Mahadevan (2021) is that instead of using a constant wind stress in time,

we force the model with a time-varying wind stress based on real wind data. This is

motivated by previous modeling studies which found that high-frequency winds may

be a crucial factor that influences the depth reached by nutrient fluxes at submesoscale

fronts, and variable winds lead to enhanced vertical transport at the submesoscales

(Franks and Walstad 1997; Lévy et al. 2009; Whitt et al. 2017). Wind data are

obtained from the Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind

Vector Analyses data set (Atlas et al. 2011). Using 1 year of wind data from 2017, we

compute a timeseries of the northwest component of the wind stress off the coast of

California, which approximately represents the upwelling-favorable direction parallel

to the coast, to force our simulations. More details can be found in Appendix 5.A.

Vertical mixing in the model is parameterized following Mahadevan et al. (2010)
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to be a function of the wind stress, so that stronger wind leads to increased vertical

mixing and deeper mixed layer depths. The vertical eddy diffusivity and viscosity 𝐾𝑧

is given by

𝐾𝑧 = max

{︂
1

2
𝐾𝑚𝑎𝑥

[︂
1 + tanh

(︂
𝑧 + 𝛿𝐸
∆

𝜋

)︂]︂
, 𝐾𝑚𝑖𝑛

}︂
, (5.2)

where 𝐾𝑚𝑎𝑥 = 10−2 m2s−1, 𝐾𝑚𝑖𝑛 = 10−5 m2s−1, and ∆ = 0.5𝛿𝐸 are the same

values used in Mahadevan et al. (2010). However, we decreased the coefficient in 𝛿𝐸

to reflect the shallower mixed layer depths observed off the coast of California, so

that now 𝛿𝐸 = 0.2
𝑓

(︁
𝜏
𝜌

)︁1/2
. The horizontal eddy diffusivity and viscosity is constant at

1 m−2s−1.

To obtain an ensemble of simulations for computing statistics and uncertainty

intervals, we run 9 numerical experiments by varying the start date of the wind

forcing. For example, the wind forcing for experiment 1 starts on February 1, the

wind forcing for experiment 2 starts on March 1, and so on. The full wind timeseries

used to force the model is shown in Fig. 5-13. Each simulation is integrated forward

in time with a timestep of 108 s and run for 65 days. The upwelling-favorable wind

stress sets up an upwelling front at the eastern boundary that eventually undergoes

baroclinic instability after about 20-30 days, forming meanders, eddies, and filaments.

The model output is saved daily, and days 40-65 are used for analysis.

5.2.2 Biological model

To simulate the cycling of nutrients and carbon, we use a simplified phytoplankton-

nutrient model adapted from Hodges and Rudnick (2004) and Freilich and Mahade-

van (2019). This is a minimal model that captures the balance of light and nutrient

limitation, which are the factors that determine the vertical structure of primary pro-

duction in the California Current System (Deutsch et al. 2021). The nutrient pool

is separated into “new” nutrients 𝑁 representing nitrate, and recycled or “old” nutri-

ents 𝑂 (consisting mostly of ammonium) to distinguish between new and regenerated

production, following Hodges and Rudnick (2004). Figure 5-1 shows schematic of the
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Figure 5-1: Schematic of nutrient cycling in the upper ocean represented by the bi-
ological model. Here, new nutrients given by nitrate 𝑁 is supplied to the euphotic
zone through upwelling, and it supports new production. Phytoplankton die natu-
rally or are consumed through predation and are recycled into “old” nutrients 𝑂 that
is primarily ammonium, which supports regenerated production. Old nutrients are
further remineralized to nitrate. In addition, there is an export of organic matter
through the sinking of phytoplankton or zooplankton fecal pellets.

biological model. The evolution of phytoplankton 𝑃 , nitrate 𝑁 , and ammonium 𝑂

are modeled by the following equations:

𝐷𝑃

𝐷𝑡
= 𝐺𝐼(𝑧)𝑃

[︃(︃
𝑁

𝑁 + 𝑘𝑠𝑁

)︃
+

(︃
𝑂

𝑂 + 𝑘𝑠𝑂

)︃]︃
−𝑚𝑃 +∇(𝜅∇𝑃 ), (5.3)

𝐷𝑁

𝐷𝑡
= −𝐺𝐼(𝑧)𝑃 𝑁

𝑁 + 𝑘𝑠𝑁
+𝑅𝑂 +∇(𝜅∇𝑁), (5.4)

𝐷𝑂

𝐷𝑡
= −𝐺𝐼(𝑧)𝑃 𝑂

𝑂 + 𝑘𝑠𝑂
+𝑚𝑃 −𝑅𝑂 +∇(𝜅∇𝑁), (5.5)

The biological model parameters are summarized in Table 5.1, and values are

adapted from Deutsch et al. (2021). Specifically we use the rates for diatoms, which
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tend to dominate the phytoplankton community in coastal upwelling regions (Wilker-

son et al. 2000). Parameters are tuned so that the model captures the correct depth of

the chlorophyll maximum, indicating the right balance of light and nutrient limitation

is represented. We also tuned the parameters so that the modeled f-ratio, defined as

the ratio of new to total production, is similar to values reported for the nearshore

CCS region of ∼0.4 (Frischknecht et al. 2018; Munro et al. 2013).

The growth of phytoplankton, represented by the first term on the right-hand-

side of Eq. 5.3, is dependent on a maximum growth rate 𝐺, light availability 𝐼(𝑧),

and nutrients whose uptake is represented with the Michaelis-Menten functional form.

Phytoplankton can use either𝑁 or 𝑂 as their nitrogen source, but there is a preference

for𝑂 (Dortch 1990) which is reflected in the lower half-saturation constant (Table 5.1).

The light available for photosynthesis decays exponentially with depth and is modeled

as

𝐼(𝑧) = exp
(︁
− 𝑘𝑤𝑧 − 𝑘𝑝

ˆ 0

𝑧

𝑃 (𝑧)𝑑𝑧
)︁
, (5.6)

where 𝑘𝑤 is attenuation of light in seawater, and 𝑘𝑝 is the attenuation due to biomass.

We choose 𝑘𝑤 = 0.08 m−1 so that the euphotic depth—the depth at which the light is

1% of surface value—in the absence of phytoplankton is 57 m, to agree with photosyn-

thetically available radiation (PAR) measurements made off the coast of California

during the S-MODE campaign in October 2022. The loss of phytoplankton is re-

turned to the 𝑂 pool, which then fuels regenerated production. Old nutrients are

broken down by bacteria and transformed back to nitrate at a rate given by the

remineralization rate 𝑅.

Units of 𝜇M nitrogen are used for all tracers in the model, and 𝑃 is converted to

grams of chlorophyll-a or grams of carbon for comparison to observations and other

studies. A note about semantics: for brevity, we may sometimes use the term “carbon”

throughout the paper, but we are specifically referring to phytoplankton carbon, as

there are no other sources of organic or inorganic carbon in our model. For the

unit conversion, we assume a constant Redfield ratio C:N of 106:16. Deutsch et al.

(2021) found that large diatoms make up 90% of modeled net primary production,
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Table 5.1: Parameters and values for the biological model. Rates are adapted from
Deutsch et al. (2021) for the California Current system, and 𝑘𝑝 is from Olivieri and
Chavez (2000).

Variable Name Units Value
𝐺 Maximum growth rate day−1 3
𝑘𝑧𝑁 half-saturation constant for 𝑁 uptake 𝜇M N 0.25
𝑘𝑧𝐴 half-saturation constant for 𝑂 uptake 𝜇M N 0.1
𝑚 mortality rate day−1 0.15
𝑅 remineralization rate day−1 0.01
𝑘𝑤 attenuation coefficient of water m−1 0.08
𝑘𝑝 attenuation coefficient per unit 𝑃 m−1(𝜇M N)−1 0.01

so we assume a high constant chlorophyll:carbon ratio of 0.065 used for diatoms

from Li et al. (2010). The nitrate is initialized with a nitrate-density relationship of

𝑁=𝜌×8 𝜇M/(kg m−3). Phytoplankton is initialized from a profile of chlorophyll-a off

the coast of San Francisco, and 𝑂 is initialized based on values Eppley et al. (1979)

and Frischknecht et al. (2018). The initial conditions are shown in Fig. 5-14. The

biological model spins up in about 20 days, after which there are no drastic sharp

changes or adjustments in the primary production and mortality rates.

5.2.3 Nutrient upwelling flux

We evaluate the nutrient flux in the nearshore 72 km of the model, which is approx-

imately double the Rossby deformation radius and encompasses the extent of the

upwelling front in our simulations. Beyond that distance offshore, there is very little

coastal upwelling or total vertical transport in our model. This is also the same cross-

shore length scale used in Jacox et al. (2018). The horizontally averaged nutrient flux

at a given depth is given by ⟨𝑤′𝑁 ′⟩, where 𝑤′ = 𝑤 − ⟨𝑤⟩ and 𝑁 ′ = 𝑁 − ⟨𝑁⟩, and

the brackets denote a horizontal average. The nutrient flux ⟨𝑤′𝑁 ′⟩ is primarily pos-

itive, representing upwelling of positive 𝑁 anomalies since 𝑁 concentration is larger

at depth and smaller at the surface. Since we do not have any wind stress curl nor

an alongshore pressure gradient that drives cross-shore geostrophic flow, the Ekman

transport alone is used as a proxy for the large scale upwelling transport. The Ekman
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transport upwelling rate 𝑤Ek is given by:

𝑤Ek =
𝜏 ||

𝜌0𝑓
· 1

𝐿𝑦

, (5.7)

where 𝜏 || is the component of wind stress parallel to the coast, 𝜌0 is a reference

density, 𝑓 is the Coriolis parameter, and 𝐿𝑦 is the width of the upwelling band that

we calculate ⟨𝑤′𝑁 ′⟩ over (72 km here). We then test five different ways to obtain

a source nitrate concentration 𝑁𝑠 to multiply with 𝑤Ek for obtaining an upwelling

nutrient flux, plus an additional fifth method where the direct 𝑤 field is used.

a) 𝐷𝑠 = MLD: First, we try using the mixed layer depth (MLD) as the source

depth, which is the approach of Jacox et al. (2018). We calculate the the mixed layer

depth at every point within the nearshore 30 km, which is approximately the Rossby

deformation radius, by using a density threshold of 0.03 kg m−3 from the surface. The

average MLD is usually around 30 m. The upwelled nitrate concentration is taken

from the average nitrate profile in the nearshore 30 km, at the average mixed layer

depth, since this is the immediate water that is being upwelled.

b) 𝐷𝑠 from comparing inshore and offshore density profiles: Another common

method to estimate the source depth is to match water mass properties in inshore

and offshore temperature, salinity, or density profiles (Carr and Kearns 2003; Carmack

and Aagaard 1977; Messié et al. 2009). To mimic this approach, we take the offshore

density profile averaged from 𝑦 =100–150 km, and compare it to the inshore (averaged

between 𝑦 =0–10 km) surface density in the mixed layer, 𝜌surf. The depth in the

offshore profile where the density equals 𝜌surf is taken to be the source depth. The

upwelled nitrate concentration is taken from the average nitrate profile from 𝑦 = 100

to 𝑦 = 150 km offshore, at the source depth. The choice of what offshore distance to

average over does not make a significant difference in the results—taking the profile

at 𝑦 = 100 km vs. averaging over a wider region makes no difference because the far

offshore region is fairly quiescent and homogeneous.

c) 𝐷𝑠 from comparing inshore and offshore density profiles and correcting for

mixing: The previous method assumes that there is no mixing as a water parcel is
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upwelled, and thus will be an overestimate of the actual concentration of upwelled

nitrate. To correct for the effects of mixing, we take the inshore profile and “unmix”

the surface mixed layer by fitting a linear density profile from the base of the mixed

layer to the surface with a stratification of 𝑁 = 10−2 s−1. This is the stratification

value that the model is initialized with, and it is the stratification in the interior of the

model below the mixed layer depth. Using the un-mixed inshore density profile, we

can again compare the surface density value to the offshore density profile to identify

the depth where the densities match. This results in a shallower 𝐷𝑠 and lower 𝑁𝑠.

d) Variable 𝐷𝑠 from scaling: The three previous methods treat 𝐷𝑠 and 𝑁𝑠 to be

fixed, so that only 𝑤Ek varies in time with the wind. This is because we assume

that it is unlikely to have profiles at the same locations every day to re-calculate the

source depth each time (a case where this would be possible is if there is a mooring

array). Alternatively, He and Mahadevan (2021) proposed a scaling relationship for

the source depth as a function of the wind stress and stratification:

𝐷𝑠 = 𝐶𝑠

(︂
𝜏

𝜌0𝑁𝑓

)︂1/2

, (5.8)

where 𝐶𝑠 = 8.16. This scaling assumes a steady state with a constant wind stress,

while the real wind stress is highly variable in time. It does not make sense to use an

instantaneous wind stress in the scaling since the source depth would likely not be

able to respond immediately to sudden changes in the wind. To address this, we use

the 7-day moving average of the wind stress to calculate the source depth in Eqn. 5.8.

For each day, 𝑤Ek is still calculated from the instantaneous wind stress that day, but

the 7-day averaged 𝜏 is used to calculate 𝐷𝑠. The upwelled nitrate concentration is

taken from the same offshore nitrate profile averaged from 𝑦 = 100 to 𝑦 = 150 km

offshore, now at the source depth which changes each time step.

e) 𝑤 · 𝑁(𝑧 = 𝐷𝑠), with variable 𝐷𝑠 from Eqn. 5.8: We also examine if using

the vertical velocity field directly provides any improvements of the nutrient flux

over using the Ekman transport. The 3D 𝑤 field can be predicted from surface

observations, but as a first test, we use a horizontal slice of the true 𝑤 field from the
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model at the mixed layer depth. Ideally, we would have a way to measure the spatial

field of 𝑁 as well to multiply with the 𝑤 field, but since we do not, we use the nitrate

concentration from the source depth calculated from Eqn. 5.8. This way, comparing

this method and the previous method e allows us to evaluate the importance of

resolving finer scale vertical motions.

5.2.4 Vertical phytoplankton carbon biomass flux

Similar to the nutrient flux, the horizontally averaged phytoplankton carbon biomass

flux at a particular depth is ⟨𝑤′𝐶 ′⟩, with 𝐶 ′ = 𝐶 − ⟨𝐶⟩, and the brackets once again

represent a horizontal mean over the region of interest (nearshore 72 km). In contrast

to nutrient fluxes, ⟨𝑤′𝐶 ′⟩ is expected to be negative resulting in a net downward

phytoplankton carbon export since phytoplankton are abundant in the upper ocean

and nearly zero below the euphotic depth. We apply the parameteriazation of (Omand

et al. 2015) in Eqn. 5.1 to estimate ⟨𝑤′𝐶 ′⟩ at the base of the mixed layer. From the

model fields at each time step, we estimate 𝑀2 = |∇ℎ𝑏| by taking the cross-shore

(which is also the cross-front direction) lateral buoyancy gradient, where buoyancy is

defined as 𝑏 = −𝑔𝜌−1
0 (𝜌− 𝜌0). The stratification 𝑁2 is averaged over the upper 50 m,

which encompasses the deepest mixed layer depths. We take the spatial average of

the surface phytoplankton concentration in the upper 15 m for [𝑃𝑂𝐶], and 𝐻 is the

average mixed layer depth. All variables are laterally averaged over the nearshore

72 km.

We find that it is more difficult to accurately capture ⟨𝑤′𝐶 ′⟩ in our simulations

with a parameterization, which motivates finding ways to estimate ⟨𝑤′𝐶 ′⟩ directly

from observations. From Chapter 4, we found that it was possible to diagnose the

three-dimensional vertical velocity field in the upper ocean with fairly good accuracy

using convolutional neural networks (CNNs) and surface observations. Here, we com-

bine the 𝑤-field predicted by the CNN with surface phytoplankton concentration to

evaluate the feasibility of directly estimating ⟨𝑤′𝐶 ′⟩. First, we re-train the CNN from

Chapter 4 using the new set of simulations, since directly applying the CNN trained

previously on the simulations in Chapter 4 did not produce as accurate 𝑤 predictions.
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This is not too surprising since we expect some differences in the models with the

change in latitude, mixing scheme, and the inclusion of time-variable winds. After

re-training, using the same input variables of surface 𝑢, 𝑣, 𝜌, as well as the mixed layer

depth and 𝑁2, the CNN is able to recreate the vertical velocity in the upper 100 m

with a correlation of 𝑟2 = 0.77 on a test set. This is comparable in performance to

Chapter 4.

To estimate the 2D phytoplankton carbon biomass distribution at a given depth

𝑧, we use phytoplankton concentration averaged in the upper 15 m, denoted 𝑃0.

Because the phytoplankton concentration varies with depth and tends to reach a

maximum subsurface, using the surface 𝑃 concentration alone will tend to under-

estimate 𝑃 deeper down. To better represent 𝑃 at a particular depth 𝑧, we scale the

surface 𝑃0 by the average phytoplankton profile shape for each simulation over the

model domain given by 𝑃 (𝑧)/𝑃0. The 𝑃 anomaly is computed from subtracting the

horizontal average, and converted to units of carbon to get 𝐶 ′. This estimate of 𝐶 ′

is multiplied by 𝑤 from the CNN to obtain an estimate of the phytoplankton carbon

export at some depth, which we choose to be the average mixed layer depth.

5.3 Preliminary results and discussion

5.3.1 Model results

The model is intended to capture certain aspects of biological and physical processes,

including upwelling of new nutrients to the euphotic zone for fueling phytoplankton

blooms. The upwelling is evident from the isopycnals sloping upwards at the coast

(Fig. 5-2), driven by the upwelling-favorable winds. During the peak upwelling season

with the strongest upwelling-favorable winds, which is April–May in our simulations,

there is an abundance of nitrate at the surface that is not entirely consumed (Fig. 5-

2a). Surface nitrate concentrations are highest at the coast and decrease offshore,

a similar pattern to what was measured from a flow-through SUNA optical nitrate

sensor during S-MODE. This large influx of nitrate at the coast leads to enhanced
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primary production nearshore, and phytoplankton concentration is further concen-

trated in the surface above 50 m since that is where there is enough light (Fig. 5-2b).

The depth of the subsurface phytoplankton maximum, between -50 and -20 m, is

similar to what was observed in Eco-CTD transects off the coast of California (Fig. 5-

15). This indicates that our model is able to capture the right balance between

light and nutrient limitation to accurately reflect the depth of the deep chlorophyll

maximmum (DCM). The DCM offshore beyond 50 km in Fig. 5-2b is deeper than

the onshore DCM because of the deeper nitracline offshore, a common feature in

EBUS (Frischknecht et al. 2018; Deutsch et al. 2021). The old nutrient distribution

is largest right below the phytoplankton maximum, since it is consumed within the

euphotic zone. The f-ratio in the simulations, defined as the ratio of new to total

production, varies spatially and temporally with the wind, but is around 0.4 in the

nearshore 50 km, and decreases offshore, similar to what is reported in other studies

(Frischknecht et al. 2018).

Figure 5-2: Example model output fields of (a) new nutrient, (b) phytoplankton, and
(c) old nutrient in the nearshore 100 km of the model domain. All tracers are in
nitrate units, which is the unit used in the model. Black contours denote isopycnals
with an interval of 0.12 kg m−3. This simulation is forced with wind fields starting
in April, the start of the peak upwelling period. The top panel shows a plan view at
a depth of 𝑧 = 8.9 m, and the bottom panel is a cross-section transect.

The highest concentrations of 𝑁 and 𝑃 are within a narrow 30 km band nearshore,

but there are filaments of elevated surface 𝑁 and 𝑃 that are advected up to 60 km

offshore (Fig. 5-2). While the simulations generate a cross-shore gradient in nitrate

and phytoplankton as expected, and we qualitatively see similar features such as
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eddies and filaments, the model does not adequately represent how far offshore up-

welled nitrate and phytoplankton are actually advected in the CCS. In satellite data

of chlorophyll-a for instance, we see phytoplankton patches extending over 200 km

offshore, but in our model, the upwelling front and 𝑃 is usually confined to the in-

shore of 50–60 km (Fig. 5-2, 5-3b). A possible explanation for this discrepancy is

that mesoscale eddies and filaments play a dominant role in the offshore transport

of carbon and nutrients over 100s of km in the CCS (Nagai et al. 2015), and our

model domain is too small to adequately capture this since there is only space in the

alongshore direction for 1-2 mesoscale eddies to fit. Furthermore, the offshore extent

of upwelled waters also covaries with large scale climate forcings such as the El Niño-

Southern Oscillation and the North Pacific Gyre Oscillation (Chabert et al. 2021),

which are not present in our model. Our model also lacks bottom topography and a

continental shelf, which is about 50 km wide off the coast of San Francisco (Song and

Chao 2004) and would alter the location of the upwelling front. The depth-averaged

chlorophyll-a concentration in the mixed layer of the model is approximately the right

order of magnitude and has a similar distribution to surface chlorophyll-a measured

by MODIS (Fig. 5-3c), with the satellite chlorophyll-a being higher than what is seen

in our model. However, we do not expect a perfect correlation since the model is not

meant to recreate this specific time of satellite measurements. Furthermore, MODIS

chlorophyll measurements have a 36% error at concentrations higher than 1 mg m−3,

which is surpassed in the coastal regions (Kahru et al. 2014).

The model generates an eddying field with vertical velocities on the order of 10s

to 100 m d−1 depending on the simulation (Fig. 5-4c, Fig. 5-9b). The eddy vertical

velocities are smaller in magnitude than the upwelling signature, but these vertical

velocities can upwell or subduct nutrients and phytoplankton carbon outside of the

upwelling band. For example, we see evidence of offshore nutrient injection into

the euphotic zone fueling new production (Fig. 5-4). In the model, we can identify

which regions of offshore elevated chlorophyll concentrations are a result of local

new production (Fig. 5-4a), as opposed to being a result of regenerated production or

offshore advection. These regions of new production coincide with hotspots of positive
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Figure 5-3: a) Chl-a concentration from MODIS TERRA on Sep. 3, 2022 off San
Francisco Bay. b) Chl-a concentration averaged in the upper 34 m from the model
simulation starting in September. The approximate size of the model output shown
in (b) is outlined in the black box in (a) for reference. c) Histogram of satellite chl-a
concentration shown in (a) and model chl-a concentration shown in (b).

upwelling nitrate flux (Fig. 5-4b), resulting from regions of positive vertical velocity

and elevated nitrate (Fig. 5-4c,d). These hotspots of offshore nitrate injection and

subsequent new production contribute around 10–20% to the total nutrient upwelling

in the model, which is dominated by the wind-driven coastal upwelling.

5.3.2 Nutrient flux estimates

We focus on vertical nutrient fluxes at the average mixed layer depth, which is either

𝑧 = −34 m or 𝑧 = −41 m depending on the simulation. This is also the depth

where the temporally-averaged ⟨𝑤′𝑁 ′⟩ profile (averaged over the analysis period from

day 40–65) is maximized. The timeseries of ⟨𝑤′𝑁 ′⟩ at the base of the mixed layer

is strongly correlated with the wind stress with a correlation of 𝑟 = 0.77–0.94 across

the ensemble, as expected from the dominance of the wind-driven coastal upwelling

(Fig. 5-5). Because of the high correlation between the wind stress and ⟨𝑤′𝑁 ′⟩, all
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Figure 5-4: Example of new production as a result of offshore nutrient injection in to
the euphotic zone. The black contours are new production rates and all snapshots are
shown at -20 m depth, from day 48 of a simulation with winds starting in July 1. (a)
Chlorophyll concentration. (b) Vertical nitrate flux 𝑤𝑁 at the same depth, where red
positive values indicate upwelling of nitrate. (c) Vertical velocity, where red (positive)
indicates upward and negative indicates downwelling. (d) Nitrate concentration.

the methods for estimating nutrient flux that rely on Ekman transport have equally

high correlations with ⟨𝑤′𝑁 ′⟩ as well (Fig. 5-6). Figure 5-6a–e shows timeseries of

the different nutrient flux estimates for one simulation (with winds starting in July),

as well as the time-averaged fluxes in panel f. The time-averaged fluxes from each

simulation is then used to compute the percent errors from different methods across

the ensemble (Fig. 5-7).

To start, we find that using the nutrient concentration at the base of the mixed

layer depth tends to under-estimate ⟨𝑤′𝑁 ′⟩, which is evident in a single simulation

(orange line and bar in Fig. 5-6a, f) as well as across the ensemble as a whole (orange

box in Fig. 5-7). This is because the mixed layer is within the euphotic depth in
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Figure 5-5: Timeseries of the average nutrient flux at 𝑧 = −34 m computed directly
from the model as ⟨𝑤′𝑁 ′⟩ and the magnitude of the upwelling-favorable wind stress
for the simulation starting in July 1.

our simulations, so the nitrate concentration at the mixed layer depth is very low

since it is consumed. The next approach of matching densities between an inshore

and offshore profile tends to over-estimate the source depth and nutrient flux (green

in Fig. 5-6, Fig. 5-7), since it does not account for any mixing diluting the nutrient

concentration as it is upwelled. By correcting for the effects of mixing, the prediction

bias is improved (red in Fig. 5-6, Fig. 5-7), but there is quite a large spread in the

errors from ∼ −60% to ∼ 30%. The large spread could be because the nutrient

concentration is being held constant, when in reality it is variable in time. When we

allow the source depth, and consequently 𝑁 , to vary in time by using the scaling of

He and Mahadevan (2021), we come very close to the true ⟨𝑤′𝑁 ′⟩ with a near-zero

bias and smaller range of errors (purple in Fig. 5-6, Fig. 5-7). This agrees with Jacox

et al. (2018)’s findings that upwelling indices based on Ekman transport alone do not

necessarily fully capture the upwelling nitrate flux, because the nitrate concentration

itself is also variable in space and time. Thus, it is important to take into account

the temporal variability of 𝑁 itself.

Lastly, we find that using the actual 𝑤 field multiplied by time-varying nutrient
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Figure 5-6: a–e) Timeseries of nutrient fluxes at 𝑧 = −34 m estimated from different
methods from a simulation starting July 1. f) Average nutrient flux from days 40–65
for this simulation.

concentration at the source depth (pink in Fig. 5-6, Fig. 5-7) is not a significant im-

provement over using Ekman transport with a varying source depth (purple). This

initially was somewhat surprising since we expected that the direct 𝑤 would be better

than approximation of 𝑤Ek, especially since Ekman transport explains approximately

70% of the variability in vertical transport across the ensemble (very similar to the

72% of variance explained in Jacox et al. (2018)’s model), which leaves a non-negligible
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30% of the vertical transport variability that is not captured by Ekman transport.

However, it appears that resolving the granularity of 𝑤 is not that useful if we are

unable to also resolve the 2D nitrate field at high resolution. Applying a single 𝑁

concentration to the entire 𝑤 field does not accurately capture the spatial distribution

of 𝑤′𝑁 ′ since not all regions with a positive 𝑤 lead to a positive nutrient flux. The

spatial variability in 𝑁 is important for identifying offshore hotspots of nutrient injec-

tion and new production seen in Fig. 5-4. Interestingly, using the direct 𝑤 multiplied

with 𝑁 at the source depth tends to under-predict the nutrient flux by about 10%

(pink bar in Fig. 5-7), which makes one wonder if the errors are primarily due to not

capturing the offshore injection hotspots.

Figure 5-7: Percent error of each nutrient flux estimate method. Errors are averaged
over a 25 day period in each simulation, so there are 9 error estimates for each method
(one for each simulation).
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5.3.3 Phytoplankton carbon biomass flux

The phytoplankton carbon flux ⟨𝑤′𝐶 ′⟩ proved to be more complicated to predict than

nutrient fluxes. While nitrate concentration increases with depth, phytoplankton

biomass is maximized subsurface around 30–40 m, right above the euphotic depth, in

our simulations. We expect a net export of phytoplankton carbon below the euphotic

depth since carbon rich waters are brought downwards, while carbon poor waters

are upwelled (Omand et al. 2015). Ekman transport does not capture export since

𝑤Ek is positive and in the nearshore upwelling region, 𝐶 ′ is positive due to enhanced

primary production, which would result in a positive flux. The eddy-subduction

parameterization of Omand et al. (2015) in Eqn. 5.1 also does not fully capture

⟨𝑤′𝐶 ′⟩ in our model (Fig. 5-8). For example, during times of strong wind such as

on day 63, ⟨𝑤′𝐶 ′⟩ is temporarily positive due to upwelling, but Eqn. 5.1 predicts a

stronger negative flux. This is because stronger winds increase the mixed layer depth,

which strengthens the mixed layer eddy parameterization 𝜓𝑒, since 𝜓𝑒 ∝ 𝐻2. This is

a case where trying to directly estimate ⟨𝑤′𝐶 ′⟩ from a reconstructed vertical velocity

field and an estimate of 𝐶 ′ at depth may be needed.

We showed in the previous chapter (Chapter 4) that it is possible to diagnose the

3D vertical velocity in the upper ocean and adequately capture its fine scale spatial

structures and magnitude, which is still true for our new set of simulations with

varying winds (Fig. 5-9a,b). The main challenge is with estimating 𝐶 ′ since surface

concentrations are not necessarily reflective of concentrations at depth. For example,

in the snapshot in Fig. 5-9d, we see a typical cross-shore difference in the DCM depth

(?Deutsch et al. 2021): the DCM beyond ∼ 50 km offshore is at around 30 m depth,

while in the nearshore 30 km, the phytoplankton maxima is at a shallower depth

and reaches all the way to the surface. As a result, surface phytoplankton is only

representative of subsurface concentrations above the depth of the offshore DCM.

This is more clearly evident from the phytoplankton carbon anomaly in (Fig. 5-9c).

The anomaly is from a horizontal average at each depth, and in the nearshore region,

𝐶 ′ changes sign from positive to negative at the depth of the offshore DCM. This is a
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Figure 5-8: Timeseries of phytoplankton carbon flux at -34 m, the average mixed
layer depth. The simulation shown is the same as in Fig. 5-6. The flux ⟨𝑤′𝐶 ′⟩
calculated directly from the model is shown in blue, and estimated flux from the
parameterization in Eqn. 5.1 is shown in yellow. The upwelling-favorable wind stress
magnitude is shown on the right-axis in cyan. The variability in ⟨𝑤′𝐶 ′⟩ is not well
captured by the wind nor Eqn. 5.1.

consequence of the region over which we chose to average; if we limited the domain to

be only the nearshore ∼ 30 km, then 𝐶 ′ would not change sign with depth and would

always be increasingly positive closer to the coast. Predicting the right magnitude of

𝐶 ′ at depth is another challenge. The simple approach we take of scaling the surface

value by an average phytoplankton profile for the whole domain is a rather crude

method that generally gets the right order of magnitude for 𝐶 ′, but can sometimes

be off by a factor of two (Figs. 5-10, 5-11).

Figures 5-10 and 5-11 are examples from two different simulations showing snap-

shots of the true 𝑤, 𝐶 ′, and 𝑤′𝐶 ′ fields from the model in the top row, and in the

bottom row is the corresponding predicted 𝑤, 𝐶 ′, and 𝑤′𝐶 ′ fields. In general, the

spatial patterns in 𝑤 and its negative skew are captured well. The 𝑤 magnitudes

are in good agreement in Fig. 5-11, while the strongest negative velocities are un-

derpredicted by about 20% in Fig. 5-10. The 𝐶 ′ predictions generally show similar

signs and structures as the true 𝐶 ′ at depth, but in Fig. 5-10, the positive 𝐶 ′ located

around 60 km offshore as part of the deeper offshore DCM is not captured by the
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Figure 5-9: Example 3D fields of a) predicted 𝑤, b) actual 𝑤, c) carbon anomaly
from horizontal mean at each depth, d) and carbon from day 45 of simulation that
started in September. The surface shown is located at 𝑧 = −15𝑚. Black contours are
isopycnals with contour intervals of 0.12 kg m−3, and gray line indicates the mixed
layer depth determined as change in density of 0.03 kg m−3 from the surface.

surface phytoplankton. Fortunately, vertical velocities are weak offshore, so this error

in 𝐶 ′ is does not appear too strongly in the flux. The general locations of positive

and negative flux match pretty well, but the magnitude of 𝑤′𝐶 ′ is significantly under-

predicted. These preliminary results show that qualitatively, combining predictions

of the 3D 𝑤 field from the CNN with surface carbon concentrations, such as what is

obtainable through remote-sensing, may be able to illuminate regions of positive and

negative phytoplankton carbon biomass transport. But more work needs to be done

to refine these methods to improve the magnitudes.
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Figure 5-10: Vertical velocity, 𝐶 ′, and 𝑤𝐶 ′ at the mixed layer depth, at the same
snapshot in the simulation shown in Fig. 5-9. The top row shows the direct fields
from the model, while the bottom row shows the predicted fields. A scatterplot of
the true 𝑤′𝐶 ′ and the predicted 𝑤′𝐶 ′ is shown on the upper left with the correlation
printed above, and a histogram of the true flux distribution (blue) and the predicted
flux distribution (orange) is shown on the bottom right.

Figure 5-11: Same as Fig. 5-10, but for a different simulation starting in February.

5.4 Summary and future work

In this chapter, we make progress on evaluating the importance of resolving fine scale

vertical eddy fluxes for vertical nutrient and phytoplankton transport in coastal up-
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welling regions. In an idealized bio-physical model with realistic time-varying winds,

the vertical nutrient transport within 72 km of the coast is sufficiently described

with classic Ekman theory if we use a time-varying source depth given by scaling in

Eqn. 5.8. Even though Eqn. 5.8 was developed for a steady state assuming constant

winds, we find that it also works well when applied to time-varying winds if the winds

are averaged over a 7-day period. Compared to using a fixed nutrient concentration

determined by a single source depth value from offshore or onshore profiles, we find

that using the source depth given by Eqn. 5.8 and a single offshore 𝑁 profile leads

to the smallest bias and smallest uncertainty in ⟨𝑤′𝑁 ′⟩. This supports Jacox et al.

(2018)’s conclusion that the variability of the nitrate content of upwelled waters is

important to consider for estimates of ⟨𝑤′𝑁 ′⟩. The importance of subsurface nitrate

variability has implications for previous estimates of new production in coastal up-

welling systems that assumed a fixed source depth and fixed nitrate concentration

from climatology (Messié et al. 2009).

Quantifying the carbon export ⟨𝑤′𝐶 ′⟩ proves to be more difficult, as ⟨𝑤′𝐶 ′⟩ is

influenced by upwelling and cannot be fully described by an eddy-driven export pa-

rameterization. It is also important to note there is a significant contribution to ⟨𝑤′𝐶 ′⟩

from gravitational sinking, which is neglected in our model for the time-being. The

sinking flux could be a larger fraction than eddy fluxes, and better quantifying both

components in upwelling systems is necessary to determine their relative contribu-

tions. Here, we focus finding ways to enable more direct estimates of the eddy-driven

component of ⟨𝑤′𝐶 ′⟩ from observations. We propose an approach for estimating the

vertical phytoplankton carbon biomass flux by separately estimating 𝑤 from surface

and density profile observations using a CNN, and then estimating 𝐶 ′ from surface

measurements of phytoplankton, similar to what might be available from remote-

sensing observations. Our simplistic method for estimating 𝐶 ′ only works well above

the depth of the offshore DCM and in the nearshore ∼30 km where phytoplankton

blooms have a surface signature. However, there is a lot of potential for improving

estimates of 𝐶 ′.

There are more sophisticated algorithms for predicting subsurface chlorophyll pro-
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files from surface data with more accuracy. An example is the method of Uitz et al.

(2006), which consists of multiple steps of first sorting vertical chlorophyll-a profiles

into different trophic categories based on their near-surface chlorophyll-a, and em-

pirically fitting a Gaussian that varies depending on the trophic categories. This

method perhaps may be able to better distinguish between the different chlorophyll-a

profiles onshore and offshore, which should be treated differently. In addition, there

is a new dataset of global 3D vertical particulate organic carbon and chlorophyll-

a that was created using neural network trained on a combination of satellite and

Argo data (Sauzède et al. 2016; Sauzède et al. 2021). This dataset is available on

a 0.25∘ grid and at weekly resolution, which is too coarse for evaluating ⟨𝑤′𝐶 ′⟩ at

the submesoscales. But, it is conceivable to learn from how they trained their neural

network and apply a similar method to finer scale data. For instance, as input data,

they use the surface remote sensing reflectance at five wavelengths, sea level anomaly,

PAR, vertical profiles of temperature, salinity, 𝑁2, the mixed layer depth, as well

as the day of year and longitude/latitude coordinates. This indicates that having

a lot of vertical profile information (full vertical profiles of temperature, salinity, in

addition the mixed layer depth and 𝑁2) is important, and we cannot get away with

relying on just surface measurements alone. With the advent of more biogeochemical

profiling instruments such as BGC-Argo (Argo 2023), and high-resolution profiling

instruments such as the EcoCTD (Dever et al. 2020), it is possible to obtain more

vertical profile data of physical and biological fields at the smaller scales, which is

promising for applying methods such as that of (Sauzède et al. 2016) to predicting

phytoplankton and POC subsurface.
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5.A Appendix

Supporting Information for “Vertical transport of nutrients and phytoplankton in an

upwelling system”

5.B Cruise observations

The modeling, particularly the biological model, is inspired by and based off of obser-

vations made about 100 km off the coast of San Francisco during two field campaigns

as part of the NASA EVS-3 Submesoscale Ocean Dynamics Experiment (S-MODE)

(Farrar et al. 2020). S-MODE is focused on the role of submesoscale dynamics on

the vertical transport in the upper ocean. The first field campaign took place from

Oct. 19–Nov. 6, 2021, and the second campaign occurred Oct. 3–Nov. 4, 2022. Ob-

servations that informed our modeling include underway nitrate measurements from

an Optical UV nitrate sensor (SUNA) that measured near-surface nitrate concen-

tration from the ship’s flow through, which was calibrated against nutrients water

samples taken from the underway system. In addition, underway profiling from the

ship with an Eco-CTD (Dever et al. 2020) allowed for transects with high resolution

(< 1 km) profiles of temperature, salinity, dissolved oxygen, and bio-optical proper-

ties including chlorophyll-a fluorescence, photosynthetically active radiation (PAR),

and backscatter.

5.C Additional model information

Wind forcing : Wind velocity data are from the Cross-Calibrated Multi-Platform

(CCMP) Ocean Surface Wind Vector Analyses data set (Atlas et al. 2011). The

CCMP wind product integrates wind observations from multiple radiometers and

scatterometers with a reanalysis wind field, and the data are available on a 0.25 grid

at a 6-hour resolution. Wind stress is from the wind velocities following Large and

Pond (1981). The alongshore component of wind stress that drives coastal upwelling
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Figure 5-12: Surface nitrate off the coast of California measured on Oct. 22, 2021.

can be calculated as 𝜏 || = 𝜏𝑥𝑐𝑜𝑠𝜃+𝜏 𝑦𝑠𝑖𝑛𝜃, where (𝜏𝑥, 𝜏 𝑦) are the east-west and north-

south components of the wind stress, respectively, and 𝜃 is the angle the coast makes

with the equator. We take 𝜃 = −45∘ here to obtain the Northwest component of the

wind stress, which is approximately the upwelling-favorable direction off the coast of

California. We use a year’s worth of wind data from 2017, and average the wind stress

in a box from 125–115∘ W and 29–36∘ N (Fig. 5-13). During the upwelling season

from March to October, the mean NW wind stress is about 0.05 N m−2 and is nearly

always positive, which is the upwelling-favorable direction (Fig. 5-13). The 6-hourly

wind stress is linearly interpolated to the numerical model time step of 108 s to force

the model.
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Figure 5-13: Average northwest wind stress timeseries off the coast of California
in 2017. The upwelling season from March to October is shaded in gray, and the
horizontal blue line indicates the average NW wind stress during the upwelling season.
The orange line indicates the annual mean, and the dashed gray horizontal line is at
zero.

Figure 5-14: Initial conditions for nitrate, phytoplankton, and ammonium.
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Figure 5-15: Comparison of model transect of chlorophyll-a (left) with observed tran-
sect from an Eco-CTD (right). The simulation shown is forced with winds starting
September 1, and day 50 of the run is shown. The Eco-CTD observations are from
November 2021. The transect is from 40–80 km offshore, while Eco-CTD transect is
located about 100 km offshore of California. Black lines show the isopycals, and the
contour interval shown is 0.4 kg m−3 to match the contour interval in the Eco-CTD
transect.

Figure 5-16: a) Example of inshore (𝑦=7 km) and offshore (𝑦 = 100 km) density
profiles from the center of the model domain at 𝑥 = 48 km. The vertical gray
line shows where 𝜌 in the offshore profile matches the surface density in the inshore
profile. b) Same as (a), but the dashed blue line shows what the inshore density
profile would be if the surface was not mixed. The dashed gray line now indicates
where the offshore 𝜌 profile now matches the new inshore surface 𝜌 value. c) Nitrate
profiles from the same location as the 2 density profiles. Solid and gray dashed lines
show the source depths estimated from (a) and (b). The offshore nitrate profile is
used for the upwelled 𝑁 concentration, since using the inshore values led to a large
over-estimation of ⟨𝑤𝑁⟩.
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Chapter 6

Conclusion

This thesis focuses on physical dynamics that play an important role in the ocean

carbon cycle by controlling bottom-up limitation of phytoplankton growth, export-

ing carbon out of the surface ocean, and rapidly dispersing biogeochemical tracers.

Particular emphasis is placed on coastal upwelling systems, which are some of the

most biologically productive and ecologically diverse ecosystems in the ocean. This

work contributes to improving fundamental estimates and understanding of vertical

nutrient transport and carbon export in coastal upwelling systems (Chapters 3, 4,

5), which ultimately may lead to better quantification of the ocean’s natural biologi-

cal carbon pump. At the same time, climate change requires immediate action, and

studies of negative emissions technologies needs to happen in parallel with basic sci-

ence research. Thus, this thesis also explores the feasibility and practical constraints

of coastal ocean alkalinity enhancement as a carbon dioxide removal (CDR) method

(Chapter 2). Below, I summarize the main findings from each chapter and discuss

remaining open questions and avenues of future research.

6.1 Summary

In Chapter 2, we use a mesoscale-permitting global ocean model to investigate the

limits and potential of near-shore ocean alkalinity enhancement (OAE) strategies.

We find that local ocean dynamics are crucial for determining the optimal alkalinity

addition locations that maximize carbon removal, while avoiding potential adverse

environmental impacts. Generally, we find that coastal upwelling regions can sustain
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relatively high rates of alkalinity addition because the offshore Ekman transport is

an effective way to quickly disperse alkalinity to the open ocean. Another aspect of

maximizing carbon uptake is to identify regions with high CO2 uptake efficiencies,

defined as mols of carbon removed from the atmosphere per mol of alkalinity added.

We find that upwelling systems also have relatively high uptake efficiencies, because

Ekman transport mainly advects the alkalinity horizontally and it remains near the

surface ocean. However, potential impacts to the rich ecosystems of upwelling sys-

tems need to be further studied before any at-scale deployment of OAE should be

considered.

In Chapter 3, we turn our focus to coastal upwelling systems and sought to improve

understanding of what sets the steady state upwelling source depth. By expanding

beyond a traditional two-dimensional view of steady coastal upwelling and allowing

for variability in the alongshore direction, we find that the baroclinic instability of

the upwelling front is important for determining what depth water is upwelling from.

We obtain a scaling relation for the source depth by balancing the wind-driven up-

welling process with eddy restratification as a result of baroclinic instabilities. The

source depth increases nonlinearly with the wind and decreases with higher stratifi-

cation, and we test this theory rigorously in a numerical process-study ocean model.

These findings have implications for the nutrient content of upwelled waters and con-

sequently the nutrient flux and new production rates in coastal upwelling systems,

and how they might be affected by climate change.

Next, in Chapter 4, we take a closer look the enhanced submesoscale vertical ve-

locities found at an upwelling front in a high resolution (1 km) numerical ocean model.

At the submesoscales, vertical velocities 𝑤 are enhanced at fine-scale fronts, eddies,

and filaments and can reach 𝒪(100 m d−1). These submesoscale vertical velocities can

lead to enhanced vertical transport of nutrients or carbon, but they are very difficult

to measure. We demonstrate that machine learning models may be effective tools

for linking more readily observable surface ocean data with vertical velocities subsur-

face. In particular, convolutional neural networks are relatively robust to noisy input

data compared to Random Forest or Multiple Linear Regression models. This work
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shows promise for diagnosing the 3D submesoscale 𝑤 field using remotely-observable

surface ocean measurements, such as surface density, horizontal velocities, and their

gradients. This motivates existing and future satellite missions for high-resolution

remote-sensing of surface ocean horizontal velocities, and further development of ma-

chine learning methods to apply to real ocean observations is needed.

Chapters 3 and 4 aim to improve upon the physical aspects of vertical transport,

and we apply these findings in Chapter 5 to evaluate nutrient and carbon fluxes in an

upwelling system. We couple a nutrient-phytoplankton model, with two pools of nu-

trients representing “new” and “old” (or regenerated) nutrients, to our process model

of an upwelling system. We find that the vertical nutrient flux is well captured by

Ekman transport and a time-varying source depth given by the scaling from Chap-

ter 3. This may help improve new production estimates in coastal upwelling regions,

but more work is needed to first evaluate the applicability of this to observations.

On the other hand, vertical eddy-driven phytoplankton carbon biomass flux is more

difficult to predict, because it requires resolving not only the submesoscale vertical

velocity field, but also the spatially-varying carbon field at depth. There is room for

progress to be made by using vertical velocities obtained from machine learning with

improved carbon estimates following methods of Uitz et al. (2006) or Sauzède et al.

(2016), for example.

6.2 Outlook

This thesis uses a variety of models as experimental test beds in which we evaluate

theories, and simulate realistic and idealized scenarios. Some of the models used are

based on equations describing known physics or biology (Chapters 2, 3, 5), while other

models are purely statistical and are based on large amounts of data (Chapters 4).

To the best of our abilities, the models are tethered to real-world data, such as

through using realistic initial conditions and forcing fields, or designed to recreate

ocean observations. We primarily use models as a safe place to explore new ideas in,

but key questions and avenues for future work revolve around how we can extend the
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findings from this thesis to the real world, and move from theory towards practice.

For instance in Chapter 2, a global ocean model provides insight into the spatial

variability of coastal OAE limitations and effectiveness, but there are still many re-

maining questions. The global model can tell us which regions might be promising

places to focus on for OAE, but there are many important processes that are not

resolved (in our case, the horizontal grid resolution of ∼ 30 km is significantly larger

than any realistic OAE project). Thus, regional models that can more realistically

resolve smaller scale near-shore processes and topography are needed. Another big

challenge in the space of OAE and other emerging marine carbon dioxide removal

(CDR) technologies revolve around measurement, verification, and reporting (MRV).

Models will no doubt be important MRV tools for OAE because the carbon uptake oc-

curs over extremely large areas in the ocean, and tracking exactly where the alkalinity

is dispersed to will be very difficult to do from measurements alone. Moreover, models

are useful tools for demonstrating additionality of carbon removed, since we can easily

quantify and compare CO2 fluxes in a simulation with and without any OAE. Other

big remaining questions of OAE include what are the uncertainties in the amount of

carbon removed, and what are the potential negative consequences? I am hopeful

that the Carbon Dioxide Removal Model Intercomparison Project (CDR-MIP) will

be a useful tool to help answer some of these questions (Keller et al. 2018b). In

addition, expanded ocean biogeochemical observations and monitoring will continue

to be crucial, as well as more laboratory, microcosm, and mesocosm experiments to

assess biological impacts.

Throughout this thesis, we also use a more simplified process-study model to test

theories and ideas about the vertical transport of nutrients and carbon in coastal

upwelling regions (Chapters 3, 4, 5). In science, we often like to simplify problems as

much as possible in the hopes of finding elegant solutions and to gain explainability,

but there is the risk that the simplified system is not necessarily an accurate reflection

of reality. In Chapter 3, we use this idealized model to evaluate a theory for the

upwelled source depth. For simplicity, we neglect other factors that may impact

upwelling and source depth, such as bottom topography, uneven coastlines, 𝛽, coastal
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waves, or intermittency of winds. As a result, while we find that the theory holds up

in an idealized numerical model designed to capture the minimal processes necessary

for setting up the source depth, more work is needed to assess how applicable the

theory is in the real ocean, which is always more complex. We saw in Chapter 5 that

the source depth scaling can be adapted to be used with realistic time-varying winds,

and other modifications are likely needed for different scenarios. A next step can be

to use a global ocean model or a more realistic regional model that has topography

and realistic atmospheric forcing to evaluate the source depth and find where the

scaling might break down. The eventual goal would be to evaluate upwelling source

depth from observations, but in order to do so, we also need to distinguish between

the effects of vertical mixing from upwelling.

Besides numerical models representing known physics, we also use machine learn-

ing models that require an abundance of data (Chapters 4 and 5). We are currently

in the era of big ocean data, with more data arriving every day from satellites, Argo

floats, and other autonomous ocean instruments. This presents opportunities for uti-

lizing big data tools that previously may not have been applicable to oceanographic

data sets. One such possibility that we envision is using surface observations to di-

agnose the full 3D submesoscale vertical velocity field, and to use that for estimating

eddy-driven carbon export fluxes. We make progress towards this vision by demon-

strating that machine learning models can indeed diagnose submesoscale vertical ve-

locities much better than pre-existing methods in an idealized numerical model of an

upwelling system. Questions remain regarding how to train machine learning models

on real ocean data for predicting vertical velocities, as vertical velocity measurements

are still very sparse. One potential avenue to explore is transfer learning, where the

majority of the training is done using simulated data from ocean models, but then a

smaller amount of real observations are used to fine-tune the machine learning model.

It is important to note that all of the modeling work presented are motivated and

influenced by observations, which raise questions and present opportunities that we

can further explore with models. Observations are also critical for informing model

design and evaluating models, and models can further inform observational strategies.

167



The ocean is still severely under-sampled, and it is crucial to continue investing in

more measurements and monitoring of ocean physics and biogeochemistry.
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