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on January 11, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Simultaneous localization and mapping (SLAM) is the process by which a robot
constructs a global model of an environment from local observations of it; this is a
fundamental perceptual capability supporting planning, navigation, and control. We
are interested in improving the expressiveness and operational longevity of SLAM sys-
tems. In particular, we are interested in leveraging state-of-the-art machine learning
methods for object detection to augment the maps robots can build with object-level
semantic information. To do so, a robot must combine continuous geometric infor-
mation about its trajectory and object locations with discrete semantic information
about object classes. This problem is complicated by the fact that object detection
techniques are often unreliable in novel environments, introducing outliers and mak-
ing it difficult to determine the correspondence between detected objects and mapped
landmarks. For robust long-term navigation, a robot must contend with these dis-
crete sources of ambiguity. Finally, even when measurements are not corrupted by
outliers, long-term SLAM remains a challenging computational problem: typical solu-
tion methods rely on local optimization techniques that require a good “initial guess,”
and whose computational expense grows as measurements accumulate.

The first contribution of this thesis addresses the problem of inference for hybrid
probabilistic models, i.e., models containing both discrete and continuous states we
would like to estimate. These problems frequently arise when modeling e.g., outlier
contamination (where binary variables indicate whether a measurement is corrupted),
or when performing object-level mapping (where discrete variables may represent
measurement-landmark correspondence or object categories). The former applica-
tion is crucial for designing more robust perception systems. The latter application
is especially important for enabling robots to construct semantic maps; that is, maps
containing objects whose states are a mixture of continuous (geometric) information
and (discrete) categorical information (such as class labels). The second contribution
of this thesis is, a novel spectral initialization method which is efficient to compute,
easy to implement, and admits the first formal performance guarantees for a SLAM
initialization method. The final contribution of this thesis aims to curtail the grow-
ing computational expense of long-term SLAM. In particular, we propose an efficient
algorithm for graph sparsification capable of reducing the computational burden of
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SLAM methods without significantly degrading SLAM solution quality. Taken to-
gether, these contributions improve the robustness and efficiency of robot perception
approaches in the lifelong setting.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology

4



Acknowledgments

This thesis would not have been possible without the support of so many wonderful

people. I would like to thank my advisor, John Leonard, who gave me the opportunity

to join the Marine Robotics Group, and has been a constant source of positivity and

encouragement throughout my time at MIT.

I am grateful to Nick Roy, who responded to one fateful email back in 2016, and

ended up providing a home base for me in the Robust Robotics Group during my

first year of grad school (and plenty of advice along the way). The RRG housed so

many inspiring people during my time there, and I am so thankful for all of them.

Erin Fischell, Luca Carlone, and Michael Kaess have been stellar committee mem-

bers. I appreciate their wisdom and patience as the ideas in this thesis came together.

More importantly, all of them have been great role models and supporters of my de-

velopment as a researcher.

I would like to thank the members of the Marine Robotics Group, past and present.

I couldn’t imagine a more positive and more supportive group of people to work with

for the past several years. I especially want to thank Ziqi Lu, Kurran Singh, David

Baxter, and Eddie Schneeweiss, who I had the opportunity to collaborate with on

works that directly appeared in this thesis. However, all of the folks in the MRG,

including Alan, Carol, Brendan, Chad, Tonio, Violet, Yihao, Dehann, and Pedro,

have contributed to this work in one way or another. I’m grateful to Nira for keeping

things running smoothly in the MRG and helping me navigate the administrative

intricacies of MIT.

David Rosen was a spectacular collaborator and mentor on a number of projects

appearing in this thesis. I am thankful for all of the time and energy he put into

helping me improve the mathematical rigor of my work.

I have been incredibly fortunate to be a part of both the MIT-WHOI Joint Pro-

gram and the MIT AeroAstro department during my time as a PhD student. Many

people are involved in keeping things afloat in these programs, but I especially owe

thanks to Beth, Kris, Andone, and Lea, who made it possible for me to be a part of

5



both of these fantastic programs simultaneously.

I owe a tremendous debt of gratitude to Brendan Englot and the members of

his Robust Field Autonomy Lab at Stevens Institute of Technology. It was through

Brendan and his lab that I found my way into robotics in the first place, and ultimately

ended up pursuing my PhD. I have immensely enjoyed continued collaboration with

the folks in the RFAL.

Many friends have made this place my home for the past several years. I’ve been

lucky to have great roommates (Adrian and Alex), climbing/hiking buddies (Ellen,

Jing, Fiona, Drew), and a fantastic joint program cohort (Sunfish, you know who you

are!). At the same time, I’d like to thank all my friends from before grad school,

especially Dave, Reeba, Julia, Jason, Colin, and Downey, for being amazing friends

over all these years.

I want to thank my family, especially my parents, grandparents, and siblings,

who have supported me every step of the way. Finally, I need to thank my partner,

Ashley. She is the most patient person in the world, hearing more of my research

ramblings and practice talks than perhaps anyone else over the past several years. I

am so thankful to have had her love and support all along the way, and I could not

have found a better person to navigate life with.

This work was generously supported by the NSF Graduate Research Fellow-

ship Program (GRFP), ONR Neuro-Autonomy MURI grant N00014-19-1-2571, ONR

grant N00014-18-1-2832, and the MIT-Portugal Program Flagship Project: Knowl-

edge to Data.

6



Contents

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Background and preliminaries 21

2.1 Overview of Related Literature . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Inference in hybrid probabilistic models . . . . . . . . . . . . . 21

2.1.2 Data association and outlier rejection . . . . . . . . . . . . . . 24

2.1.3 Map representation and semantic SLAM . . . . . . . . . . . . 26

2.1.4 Performance guarantees and certifiable machine perception . . 28

2.1.5 Network design and information summarization . . . . . . . . 30

2.2 Notation and mathematical preliminaries . . . . . . . . . . . . . . . . 33

2.3 Factor graphs and probabilistic models . . . . . . . . . . . . . . . . . 35

2.4 Probabilistic inference as nonlinear optimization . . . . . . . . . . . . 39

2.5 Common examples of SLAM problems . . . . . . . . . . . . . . . . . 40

2.5.1 Landmark-based SLAM . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Pose-graph SLAM . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Discrete-continuous smoothing and mapping 43

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . . . 47

7



3.2.1 Alternating minimization . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Online, incremental inference . . . . . . . . . . . . . . . . . . 51

3.2.3 Recovering marginals . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Example applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Point-cloud registration . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Robust pose graph optimization . . . . . . . . . . . . . . . . . 56

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 When is alternating minimization efficient? . . . . . . . . . . . 59

3.4.2 When can we ensure accurate solutions? . . . . . . . . . . . . 59

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Robust object-level semantic SLAM 63

4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Semantic SLAM with unknown data association . . . . . . . . 65

4.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 From MAP inference to max-product elimination . . . . . . . 69

4.2.2 From marginal MAP inference to sum-product elimination . . 71

4.2.3 Computing candidate association hypotheses . . . . . . . . . . 72

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 MIT RACECAR dataset . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 KITTI datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Performance guarantees for spectral initialization in rotation aver-

aging and pose-graph SLAM 85

5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Spectral methods for initialization . . . . . . . . . . . . . . . . . . . . 89

5.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Evaluation on synthetic data . . . . . . . . . . . . . . . . . . . 97

8



5.4.2 Evaluation on standard SLAM benchmark datasets . . . . . . 101

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Spectral measurement sparsification for pose-graph SLAM 103

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Solving the relaxation . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Post hoc suboptimality guarantees . . . . . . . . . . . . . . . 111

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion 119

7.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 120

7.1.1 Expressive models and robust inference . . . . . . . . . . . . . 121

7.1.2 Self-supervised and unsupervised learning . . . . . . . . . . . 122

7.1.3 Performance guarantees for robot perception . . . . . . . . . . 122

7.1.4 Efficient inference, compression, and hierarchy . . . . . . . . . 123

A Proofs for Chapter 5 125

A.1 Structure of the data matrices . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Analysis of the spectral relaxation . . . . . . . . . . . . . . . . . . . . 127

A.2.1 Recovering minimizers of Problem 6 as eigenvectors . . . . . . 127

A.2.2 Symmetric perturbations of symmetric matrices . . . . . . . . 128

A.3 Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3.1 An upper bound for the estimation error in Problem 6 . . . . 130

A.3.2 An upper bound for the estimation error in Problem 5 . . . . 131

A.3.3 An upper bound on 𝑑𝒮(𝑅(0), 𝑅*) . . . . . . . . . . . . . . . . . 135

A.4 Relationship to the method of Moreira et al. [95] . . . . . . . . . . . . 137

B Proofs for Chapter 6 141

B.1 Subgradients of the Fiedler value . . . . . . . . . . . . . . . . . . . . 141

B.2 Solving the direction-finding subproblem . . . . . . . . . . . . . . . . 143

9



10



List of Figures

2-1 Examples of coupled semantic SLAM systems. . . . . . . . . . . . . . 26

2-2 Illustration of landmark-based SLAM. . . . . . . . . . . . . . . . . . 41

2-3 Illustration of pose-graph SLAM. . . . . . . . . . . . . . . . . . . . . 42

3-1 Examples of discrete-continuous factor graphs in robotics. . . . . . . . 44

3-2 Overview of a single iteration of optimization with DC-SAM. . . . . . 47

3-3 Example applications of DC-SAM. . . . . . . . . . . . . . . . . . . . 54

3-4 Application of DC-SAM to robust pose graph optimization. . . . . . . 57

4-1 Conditional independence of data association variables in semantic

SLAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4-2 MIT RACECAR platform. . . . . . . . . . . . . . . . . . . . . . . . . 77

4-3 MIT RACECAR dataset trajectory error results. . . . . . . . . . . . 79

4-4 MIT RACECAR dataset semantic maps. . . . . . . . . . . . . . . . . 80

4-5 Qualitative object-level SLAM results for KITTI dataset 00. . . . . . 83

5-1 Illustration comparing true, optimal, and initial rotation estimates. . 87

5-2 Qualitative results for initialization on benchmark pose-graph datasets. 96

5-3 Cube dataset overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5-4 Influence of dataset parameters on the performance bounds for the

Cube experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6-1 Qualitative results for pose-graph sparsification. . . . . . . . . . . . . 113

6-2 Quantitative results for pose-graph sparsification. . . . . . . . . . . . 114

11



12



List of Tables

4.1 Quantitative results for semantic SLAM on the KITTI dataset . . . . 81

5.1 Quantitative pose graph initialization results for benchmark SLAM

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Summary of the datasets used in our sparsification experiments. . . . 113

13



14



Chapter 1

Introduction

1.1 Motivation

Imagine a robot traveling deep under the ocean, or even on another planet. As it

wanders, it may observe flora or fauna, or perhaps extraterrestrial geology. Most of

the data it collects may not be scientifically interesting, but suppose after a few hours

of deployment, it notices something surprising. Immediately, the robot communicates

to scientists – maybe they are located topside on a boat, or thousands of miles away

on Earth. Because of communication delays, it may be a few seconds or a few minutes

before the data makes it to a scientific expert. By the time a scientist can send back

a command to revisit the point where the observation was made, our robot could be

far away! In order to return and sample the region (i.e. reacquire the target), the

robot must store an internal map of its environment and maintain some notion of its

own location within that map. Furthermore, we should expect that the quality of

this map must be good enough that we can guarantee that using this map, our robot

has a reasonable chance of making it back to the correct location.

Now, consider the same robot, but rather than operating for minutes or hours,

it can operate for days, weeks, or months at a time without the need for direct

intervention, instead only intermittently communicating interesting observations to

a scientist elsewhere. Indeed, such resident systems represent a major component of

the modern vision for the future of underwater autonomous vehicles. In this setting,
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we ask: “what capabilities would this robot need in order to perform its primary

task?” What does this robot’s internal representation of the world “look like?” For

example, how can we encode the types of semantically relevant concepts into our

robot’s representation that would be important to a scientific operator? Moreover, in

this regime, it may no longer be straightforward to guarantee that our robot can return

to locations flagged by an operator with high probability. Even in the situation where

the phenomenon of interest is static (i.e. unchanging in time), it may take days for

the robot to return to its previous location, and, without a good map, accumulating

positional error in the process. The key to addressing this problem is understanding

which properties of the measurements collected by a robot influence its positional

error, and ensure that our robot takes actions that ensure high-quality localization.

We envision a scenario in which an underwater autonomous vehicle is tasked with

exploring and persistently monitoring an a priori unknown environment. We assume

the environment to be sparsely populated with a set of objects (natural or man-made),

such that the semantic class or category of these objects (or some subset thereof)

is known, and therefore that the system may be equipped with a detection model

capable, at least in a noisy sense, of locating and classifying some of these objects.

The system is tasked with keeping track of these semantic landmarks, and, due to

bandwidth constraints, it is limited to performing onboard computations (in real-

time) and, at best, transferring a compact summary of its observations to a topside

vessel. The straightforward principal goal of this robot is to build an accurate map

(and localize itself within this map) over an extended period of observation. To do

so, it must reason online about errors in its detection model and misattribution of

object measurements to previously mapped landmarks as well as what to remember

and what to forget in order to ensure reasonably bounded time and memory during

operation.
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1.2 Contributions

This thesis addresses the problem of developing expressive representations and al-

gorithms that enable robust, efficient long-term mapping and localization. From a

representational standpoint, we propose new computational tools and algorithms for

inference in hybrid probabilistic models; i.e. models where a subset of variables of

interest are continuous and others are discrete, taking on values from a finite set. In

turn, we develop new models, leveraging these techniques, for capturing both uncer-

tainty in object class predictions of learned perception methods and ambiguity about

measurement-object correspondence within a navigational framework. From an algo-

rithmic standpoint, we consider two issues: First, we consider the issue of bounding

the error of solutions to the specific problem of pose-graph SLAM. In so doing, we

present the first initialization technique for pose-graph SLAM that provably achieves

bounded error. Finally, we consider the issue of graph sparsification, presenting an

algorithm based on maximizing algebraic connectivity capable of producing parsimo-

nious graphs that retain the quality of SLAM estimates.

The key contributions of this thesis are four-fold:

1. We develop DC-SAM, a library permitting straightforward representation and

local optimization of hybrid factor graphs. DC-SAM extends existing tools for

nonlinear least-squares optimization in the setting of SLAM by allowing for op-

timization in hybrid, discrete-continuous models. This extension is crucial for

representing and solving problems with both continuous and discrete states of

interest, arising commonly in robot perception, controls, and planning applica-

tions. We develop a local optimization technique that leverages the conditional

independence structure present in a hybrid factor graph model to perform ef-

ficient inference. We show experimentally in several examples motivated by

robot perception applications that DC-SAM is expressive and performant, en-

abling representation of rich hybrid probabilistic models for data association

and outlier rejection (taken as two particular relevant problem instances), and

providing fast, accurate solutions in practice.
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2. We develop a novel semantic SLAM approach, taking into consideration uncer-

tainty and ambiguity. The hybrid factor graph representations supported by

our work with DC-SAM allow us to develop a probabilistic model considering

jointly the uncertainty in classifications provided by a learning-based percep-

tion model (in our case, an object detector), as well as the ambiguity in data

association. Our model seamlessly couples semantic and geometric information

in a coupled manner without additional specialized techniques. Inference is

achieved, in real-time for many practical scenarios, by making use of the lo-

cal optimization procedure in DC-SAM. We establish new connections between

different representations for ambiguous measurement-landmark correspondence

through the lens of variable elimination in factor graphs. We experimentally

demonstrate the practical advantages of different representational choices for

ambiguity in this setting, providing results on real data from the MIT RACE-

CAR platform as well as through the use of benchmark stereo visual navigation

data from the KITTI dataset.

3. We address the lack of performance guarantees for initialization techniques and

solutions to the SLAM problem. We describe a spectral initialization technique

which we show admits the first formal performance guarantees for a pose-graph

SLAM initialization method. Our analysis links the performance of estimators

for pose-graph SLAM to key spectral graph theoretic properties of pose graphs.

4. We develop MAC, an algorithm for graph sparsification based on maximizing

algebraic connectivity. MAC is simple and computationally inexpensive, and

admits formal post hoc performance guarantees on the quality of the solutions

it provides. In experiments on benchmark pose-graph SLAM datasets, we show

that our approach quickly produces high-quality sparsification results which

retain the connectivity of the graph and, in turn, the quality of corresponding

SLAM solutions, as compared to a baseline approach which does not consider

graph connectivity.
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1.2.1 Publications

The content of Chapter 3 originally appeared in: Kevin J Doherty, Ziqi Lu, Kurran

Singh, and John J Leonard. Discrete-Continuous Smoothing and Mapping. IEEE

Robotics and Automation Letters, October 2022 [47]. Chapter 4 is based on a refined

mathematical treatment of the ideas and algorithms originally presented in: Kevin

Doherty, David Baxter, Edward Schneeweiss, and John J. Leonard. Probabilistic

data association via mixture models for robust semantic SLAM. In IEEE Intl. Conf.

on Robotics and Automation (ICRA), 2020 [46]. Chapter 5 was originally presented

in: Kevin J Doherty, David M Rosen, and John J Leonard. Performance Guarantees

for Spectral Initialization in Rotation Averaging and Pose-Graph SLAM. In IEEE

Intl. Conf. on Robotics and Automation (ICRA), 2022 [48]. Finally, Chapter 6

initially appeared in: Kevin J Doherty, David M Rosen, and John J Leonard. Spectral

Measurement Sparsification for Pose-Graph SLAM. In IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), 2022 [49].

1.3 Overview

The remainder of this thesis is organized as follows: Chapter 2 provides relevant

preliminaries and background on two- and three-dimensional geometry, graph theory,

probability and statistics (including maximum a posteriori estimation as it pertains

to SLAM), and an overview of related work.

Chapter 3 introduces the DC-SAM library and optimization methods for inference

in hybrid factor graphs. Building off of DC-SAM as a natural tool for synthesizing

the output of learned object detection and classification models with geometric mea-

surements for estimation, Chapter 4 develops our approach to robust object-level

semantic SLAM which accounts for uncertainty in semantic predictions as well as

ambiguity in measurement-landmark correspondences.

In Chapter 5, we focus attention on a restricted subset of SLAM problems, namely

pose-graph SLAM, and consider the issue of bounding the estimation error of SLAM

solutions. In particular, we ask whether it is possible to produce an initial guess in
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some manner which achieves provably bounded estimation error and bounded devi-

ation from the globally optimal estimate. We show that indeed it is possible to do

so, and present an algorithm based on spectral decomposition that admits formal

performance guarantees on solution quality. We also show that the algebraic connec-

tivity or Fiedler value of the measurement graphs arising in pose-graph SLAM is a

key parameter controlling estimation accuracy.

Chapter 6 develops the MAC algorithm for graph sparsification. We consider

in particular the issue of long-term navigation, whereby controlling computational

expense and memory requirements of a SLAM system entails sparsifying the mea-

surement graph. Motivated by the insights from Chapter 5, MAC designs sparse

pose-graphs by maximizing algebraic connectivity.
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Chapter 2

Background and preliminaries

This chapter covers relevant background on the problems considered in this thesis.

Section 2.1 covers discusses relevant prior work and the “research gap” this thesis aims

to address. Section 2.2 gives a brief exposition of important notation and preliminar-

ies. Section 2.3 provides more in depth background on factor graphs an important

representational tool we use extensively in this thesis.

2.1 Overview of Related Literature

2.1.1 Inference in hybrid probabilistic models

The problem of inference in discrete-continuous (hybrid) graphical models arises in

many domains and intersects a number of communities, even within the field of

robotics. Our focus in this thesis will be on applications in robot perception, so

we primarily discuss related works in these settings. The interested reader may refer

to Dellaert [39] for a discussion of these models in broader robotics applications or

Koller and Friedman [75, Ch. 14] for a discussion of computational hardness, inference

techniques, and a detailed review of literature on the general problem of inference in

hybrid models. Finally, while we discuss the particular optimization approach con-

sidered in Chapter 3 in relation to existing methods, it is important to note: the mere

availability of a consistent framework in which these solutions could be implemented
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(as we develop in Chapter 3) enables practitioners to compare different approaches

without the need to develop the additional scaffolding usually required to adapt an

existing method.

Multi-Hypothesis Methods. The class of approaches addressing hybrid es-

timation by enumerating and pruning solutions to the discrete states are referred

to as multi-hypothesis methods. These methods appeared in classical detection and

tracking problems [115] and early SLAM applications [36]. MH-iSAM2 [63] extends

the capabilities of iSAM2 [70] to the case where measurements between continuous

variables may have ambiguity, which can be represented by the introduction of dis-

crete variables. MH-iSAM2 maintains a hypothesis tree, which can be constructed

and updated in an incremental fashion, like iSAM2, making the solver efficient. The

types of ambiguities they consider can all be represented as factors in a factor graph

where the discrete variables are all conditionally independent. This limits application

to scenarios where individual discrete variables can be decoupled. However, correla-

tions between discrete variables may arise in problem settings as diverse as switching

systems (Figure 3-1; see also [67]), outlier rejection,1 and as we explore in Chapter

4, semantic SLAM. In order to retain computational efficiency, MH-iSAM2, like all

multi-hypothesis methods, must prune hypotheses, which risks the deletion of hy-

potheses that would have later become high-probability modes. iMHS [67] takes a

qualitatively similar approach to MH-iSAM2, but focuses on the problem of smoothing

in dynamic hybrid models, exploiting the specific temporal structure of this problem

setting. Their approach extends to the setting where correlations among discrete

variables are present. Like MH-iSAM2, however, the efficiency of iMHS rests on the

ability to prune incorrect modes.

Hybrid and Non-Gaussian Inference. Hybrid inference in graphical models

has been considered previously in many settings (see [124] for a review). Prior solution

methods focus on either specific models, such as conditional linear Gaussian models

(e.g. [113]) or attempt to approximate more general models in a manner amenable to

1Though we do not explore the issue of outlier rejection problems with correlations, the interested
reader may see Lajoie et al. [79] for a formulation in the setting of SLAM.
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standard techniques (e.g. by discretizing continuous state spaces to form a discrete

inference problem). Models encountered in robotics applications are typically high-

dimensional (often with numbers of states in the thousands) and non-Gaussian [119],

and solutions are often required quickly. This precludes direct application of these

techniques to the problems we explore in Section 3.3.

Several approaches have been presented which consider non-Gaussian inference

with application to robot perception; many of these methods can be viewed as adap-

tations of general hybrid inference techniques tailored toward the computational re-

quirements and problem structure in specific robot perception problems. FastSLAM

[94] is an approach to filtering in SLAM with non-Gaussian models based on particle

filters. In particular, a set of particles representing the current state of a robot is

retained, and each particle independently samples associations from a distribution

over hypotheses. Multimodal iSAM (mm-iSAM) [53] and NF-iSAM [65] perform

incremental non-Gaussian inference for continuous-valued variables using nonpara-

metric belief propagation [132] and normalizing flows, respectively. In situations

where discrete variables can be efficiently marginalized to produce a problem exclu-

sively involving continuous states, they can approximate the posterior marginals over

the remaining continuous variables.

In contrast, our work focuses on the task of MAP estimation from the perspective

of local optimization. While we describe a mechanism for approximating marginals

given an (approximate) MAP estimate, the uncertainties provided by non-Gaussian

inference techniques can be substantially richer. However, considering this some-

what more restricted problem setting (and coarser marginal approximation) affords

us considerable benefits in terms of computational expense. Prior works applying op-

timization techniques for MAP estimation in non-Gaussian models (e.g. [108, 120])

do so by marginalizing out discrete variables and using smooth local optimization

techniques on the resulting continuous-only estimation problem. Consequently, they

do not permit the explicit estimation of discrete states, as we consider in this thesis.

Existing Tools. Several existing solvers perform optimization with models that

can be represented in terms of factor graphs. Ceres [4] and g2o [60] provide nonlinear
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least-squares optimization tools suitable for robotics applications, but they are not

suitable for inference in hybrid factor graphs, e.g. as in Figure 3-1. GTSAM [38]

provides incremental nonlinear least-squares solvers, like iSAM2 [70], and tools for

representing and solving discrete factor graphs; it is for these reasons that we choose

to extend the capabilities of GTSAM to the setting of hybrid, discrete-continuous

models. Finally, Caesar.jl [34] implements mm-iSAM [53], supporting approximate,

incremental non-Gaussian inference over graphical models commonly encountered in

SLAM, including discrete-continuous models in scenarios where discrete variables can

be eliminated through marginalization to produce a problem exclusively involving

continuous variables.

2.1.2 Data association and outlier rejection

Chapters 3 and 4 deal with problems of data association and outlier rejection. Clas-

sical work on target tracking led to the introduction of approaches like probabilistic

data association (PDA) [115] and multi-hypothesis tracking (MHT) [7] (as discussed

in Section 2.1.1). These methods were, in turn, applied in the context of filtering-

based state estimation [35, 36]. The joint compatibility heuristic for branch-and-

bound search was later proposed to prune the large number of plausible hypotheses

that arise in the context of multiple hypothesis tracking [100]. FastSLAM [93] intro-

duced a particle filtering-based approach to the non-Gaussian inference problem of

data association in which a data association sampler was introduced, serving as an

alternative to explicit search over associations.

Many methods for data association and outlier rejection have been proposed in

the context of smoothing-based graphical SLAM. The switchable constraints method

[133] incorporated outlier rejection into the usual smoothing-based SLAM estimation

process by introducing binary decision variables attached to each measurement. Max-

mixtures [105] choose the minimum cost assignment to discrete hypothesis variables

for a given estimate of the vehicle trajectory and map. The hybrid junction tree

inference method of Segal et al. [127] iteratively updates discrete variables. Methods

like pairwise-consistent measurement set maximization (PCM) [88] reformulate the
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outlier rejection problem as one of find the largest pairwise-consistent set of measure-

ments. Though we do not apply PCM in our setting, one possible enhancement to our

approach would be to incorporate pairwise consistency constraints to rule out unlikely

data associations. Yang et al. [145] propose a graduated nonconvexity (GNC) proce-

dure for optimizing (typically nonconvex) outlier-robust cost functions in which they

successively produce and optimize more well-behaved convex surrogate cost functions.

In a series of papers, Pfeifer et al. [106–108] address a variety of robot perception

applications by means of optimization over Gaussian mixture models. Their approach

can be shown to be equivalent to the sum-product elimination approach we discuss,

but rather than directly optimizing the marginal posterior, as in their work, we make

use of expectation-maximization, which leads to a somewhat simpler implementation

for optimizing the same objective.

The multi-hypothesis methods discussed in Section 2.1.1, like MH-iSAM2 [63],

MH-JCBB [142], and iMHS [67] are the most recent incarnations of the multi-hypothesis

tracking paradigm as applied to data association and outlier rejection for SLAM sys-

tems. MH-JCBB uses the joint compatibility heuristic [100] for robust data associa-

tion, maintaining multiple “tracks” of data associations. All of these methods require

online pruning of association hypotheses, which may discard correct combinations of

hypotheses. Notably, the work presented in Chapters 3 and 4 allows us to exploit the

specific conditional factorization of robot perception problems to compactly represent

a large number of these hypotheses without the need to perform pruning.

Recent techniques consider robust estimation using convex relaxations [25, 27,

79, 144] to mitigate the effects of perceptual aliasing, often in the context of laser

scan matching or appearance-based loop closure. Restricting consideration to certain

measurement models (e.g. those encountered in pose-graph optimization or point

cloud registration), these approaches allow computation of lower bounds on the ob-

jectives encountered in outlier robust estimation. Existing methods, however, are

not adapted to the sorts of measurement models we consider here. Our approach

allows for a much broader range of measurement models, while sacrificing convexity.

An interesting area of future work would be to consider convex relaxations of the
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(a)
(b)

Figure 2-1: Coupled semantic SLAM systems. (a) SLAM++ [123] is one of the
first coupled semantic SLAM systems and uses maximum-likelihood data association
for semantic landmarks (with a priori known 3D object models). (b) The recent
work of Bowman et al. [18] uses expectation-maximization to address the semantic
SLAM problem with unknown data association. Figures adapted from [123] and [18],
respectively.

formulation in our current presentation, even for a slightly restricted class of models.

Finally, random finite sets [98] are a related formalism useful for describing and

performing inference involving the joint posterior distributions encountered when

combining the SLAM and data association problems. In this work, we opt to for-

mulate the data association and SLAM problems as a joint optimization procedure,

seeking only a point estimate of robot and landmark states. However, random finite

set approaches may present an interesting alternative in the setting where we aim to

infer a distribution over the variables of interest rather than a point estimate (see, for

example, [45] for prior work on the topic of semantic SLAM).

2.1.3 Map representation and semantic SLAM

Chapter 4 of this thesis deals with map representation; particularly object-based, se-

mantic map representations, which may capture not just where environmental features

or landmarks are, but also what they are. Broadly, we are concerned with navigation

methods that incorporate learning-augmented perception methods, such as, but not

exclusively, object detectors. Most commonly, semantic map representations are con-

structed in a decoupled fashion, i.e. assuming the availability of accurate poses from

a SLAM or odometry system, e.g. [91, 121], and synthesizing semantic information
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(be it from an object detector, or other means) in a post hoc manner. However, clas-

sifications or descriptors obtained from object detectors have recently been used to

aid data association in the context of semantic SLAM, where inference of (typically

discrete) semantic labels is coupled with data association. Most work on this coupled

form of the semantic SLAM problem considers maximum-likelihood data association

[92, 101, 102, 123, 146] (see Figure 2-1a), which is effective for small spatial scales or

short-term operations where uncertainty growth can be more easily mitigated, a few

approaches consider robust alternatives. Robust handling of measurements acquired

via learned perception techniques is especially important in the long-term regime

where these methods are likely to encounter data inconsistent with that encountered

at training time (and we should not expect perfect precision and recall in the regime

as operation time “goes to infinity”).

A few recent approaches to semantic SLAM consider more robust alternatives.

The nonparametric Bayesian approach of Mu et al. [97] alternates between sampling

data associations and recomputing SLAM solutions. By retaining the association

variables during optimization, this method offers improved robustness compared to

maximum-likelihood data association, but the requirement to store and recompute

discrete association variables is computationally demanding. Bowman et al. [18]

describe an expectation-maximization procedure for optimizing the marginal poste-

rior. In their setting, association variables are marginalized out and optimization

is performed on the resulting factor graph by alternating between computing data

association weights and improved assignments to robot and landmark states. In our

prior work [45], we considered a treatment of the semantic SLAM problem where

we marginalize out the data association variables and aim to approximate the non-

Gaussian posterior using nonparametric belief propagation [53, 132], and later, using

nonlinear least-squares for optimization [46]. In this work, we reveal that in fact prior

work making use of marginalization of data association variables (i.e. [18, 45, 46]) can

all be understood in terms of elimination operations on a factor graph. Moreover, this

allows us to construct an elimination approach in such a way that the SLAM prob-

lem defined over the eliminated graph is equivalent to the original problem. Finally,
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with these tools in hand, we show that we can represent the resulting association-

ambiguous measurements in terms of smart factors [28]. In consequence, one can

implement these models simply as factors within a hybrid factor graph optimization

framework (e.g. DC-SAM [47] as described in Chapter 3), thereby allowing practition-

ers to make use of these methods without the need to develop custom optimization

routines.

2.1.4 Performance guarantees and certifiable machine percep-

tion

In the interest of better understanding the performance of estimators used for robot

perception, in Chapter 5, we discuss the problem of initialization for pose-graph

SLAM and establish several performance guarantees for estimators. SLAM (as well

as multiple rotation averaging, where the variables we aim to estimate are restricted

to rotations) are often formulated as high-dimensional, nonconvex optimization prob-

lems, which are solved using local search techniques. Consequently, solving these

problems requires efficient algorithms for producing an “initial guess.” Historically,

research on this topic has focused on developing cheap, but typically inexact, con-

vex or linear relaxations of the SLAM (resp. rotation averaging) problems [30, 90].

While these techniques often work well in practice, the fact that they are obtained

as heuristic approximations makes it difficult to ascertain what specific features of

SLAM or RA problems determine their performance. Consequently, it is difficult to

assess under what conditions these techniques can be reliably deployed.

A related line of research is the development of Cramér-Rao bounds for the pose-

graph SLAM and rotation averaging problems [17, 33, 72]; these works provide lower

bounds on the achievable estimation error in expectation. In this work, we derive a

complementary set of upper bounds on the estimation error on a per instance basis.

Interestingly, our estimation error upper bounds depend upon precisely the same spec-

tral quantities as do the Cramér-Rao (lower) bounds, indicating that graph spectra

are objects of central importance in understanding the statistical properties of SLAM
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and RA estimators.

The spectral relaxation approach to initialization that we consider has previously

appeared in other problem settings, particularly in the area of phase synchronization

problems (cf. [15, 16, 80, 128]). In particular, Ling [80] describe error bounds that

are qualitatively similar to those described in Chapter 5, though theirs are concerned

specifically with orthogonal group synchronization problems. Liu et al. [81] take a

similar approach to ours in order to derive error bounds for spectral estimators of

synchronization problems defined over subgroups of the orthogonal group (including

SO(𝑑)), but employ a different definition of the perturbation than the one we consider

here. As we will show, our notion of perturbation has the advantage that it follows

naturally from a generative model of SLAM and RA, and furthermore, directly reveals

the spectral properties of the measurement network (specifically, a kind of generalized

algebraic connectivity) as the key quantities controlling the worst-case performance

of our spectral initialization method.

Recently, Moreira et al. [95] proposed a computationally-efficient Krylov-Schur

decomposition approach for pose-graph SLAM. We show in Appendix A.4 that their

method is formally equivalent to a special case of the one we present in Chapter 5

(namely, an unweighted, rotation-only variant of our spectral initialization procedure).

However, our construction arises more naturally from spectral relaxation, and addi-

tionally allows for the incorporation of translational measurements, which we show

in Section 5.4 can have a significant impact on estimation quality. Arrigoni et al. [5]

also describe a spectral method for SE(𝑑)-synchronization. While an analysis similar

to ours could likewise be carried out for their method, the form of the relaxation they

consider would lead to more complicated bounds due to a dependence on the scale of

the translational states. Finally, Boots and Gordon [14] consider spectral techniques

for the range-only SLAM problem. Though their problem setting differs from the one

considered here, extension of the techniques presented in this work to scenarios with

different types of measurement models is an interesting area for future work.

Finally, certifiably-correct machine perception has emerged as a key area of inter-

est to the robotics community, resulting in the development of algorithms capable of
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directly computing globally optimal solutions of certain nonconvex estimation prob-

lems under moderate noise [20, 26, 29, 31, 41, 51, 118, 136]. Our analysis provides

new bounds on the estimation error of the maximum likelihood estimators recovered

by these techniques in terms of the magnitude of the measurement noise. Moreover,

the bounds we present suggest that when these estimators, which are often based

on large-scale semidefinite relaxations, do attain globally optimal solutions, the re-

sulting estimates have error bounds that match (up to small constant factors) the

error bounds we derive for our spectral initialization, which is easily implemented

and computationally inexpensive.

2.1.5 Network design and information summarization

The work in Chapter 5 as well as prior work on performance guarantees for robot

perception (see e.g. [119] for a review) identify spectral properties of measurement

graphs as key properties controlling estimation error. In Chapter 6 we will describe

approaches for leveraging these insights to develop algorithms for long-term SLAM.

In particular, these properties motivate an answer to the question what information

should we keep, and what can safely be forgotten? in the setting of lifelong navigation.

Prior work on this topic can be divided into information summarization and sparsifi-

cation, where we are interested in removal or compression of redundant information

online or after measurements are acquired, and network design, where the principal

objective is to decide where to add edges to a measurement graph or, more concretely,

where a robot should go next to gather information. While the latter topic (active

SLAM) is not a central focus of this thesis, many of the performance criteria for

making these decisions are identical to (or substantially overlap) those encountered

in the setting of information summarization or sparsification.

Importance of the algebraic connectivity in SLAM The importance of alge-

braic connectivity in general has been observed since at least 1973, with the seminal

work of Fiedler [52]. In robot perception, the algebraic connectivity has appeared

in the context of rotation averaging [17], linear SLAM problems and sensor network
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localization [72, 73], and pose-graph SLAM [33] as a key quantity controlling esti-

mation performance. In particular, Boumal et al. [17] observed that the inverse of

the algebraic connectivity bounds (up to constants) the Cramér-Rao lower bound on

the expected mean squared error for rotation averaging. In Chapter 5, we show that

it appears as a key quantity controlling the worst-case error of estimators applied

to measurement graphs in pose-graph SLAM and rotation averaging (where larger

algebraic connectivity is associated with (statistically) lower error).

Maximizing the algebraic connectivity The problem of maximizing the alge-

braic connectivity subject to cardinality constraints has been considered previously

for a number of related applications. Ghosh and Boyd [58] consider a semidefinite

program relaxation of the same objective we consider. Alternatively, Nagarajan [99]

considered a mixed-integer approach to optimize this objective. While our overall

approach can make use of any solution to the relaxation we consider, neither of these

methods scales to the types of problems we are considering. To the best of our knowl-

edge, this is the first time an approach has been proposed for pose graph sparsification

which makes use of any approach to solving a convex (or concave) relaxation of the

algebraic connectivity maximization problem.

Network design and pose graph sparsification The theory of optimal exper-

imental design (TOED) [111] gives several optimality criteria applicable to network

design. Specifically, A-optimality, T-optimality, E-optimality, and D-optimality are

common criteria, each of which corresponds to optimizing a different property of the

information matrix describing the distribution of interest (in SLAM, this is typically

the joint distribution over robot and landmark states). Briefly, A-optimal designs

minimize the trace of the inverse of the information matrix, D-optimal designs max-

imize the determinant of the information matrix, E-optimal designs maximize the

smallest eigenvalue of the information matrix, and T-optimal designs maximize the

trace of the information matrix. Chen et al. [33] discuss the connections between

Cramér-Rao bounds for pose-graph SLAM and the A-optimality and T-optimality
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criteria. Historically, Cramér-Rao bounds and the optimal design metrics arising

from them have been popular tools for network design and active SLAM [33, 72],

including, e.g. in application to the planning of underwater inspection routes [74].

Khosoussi et al. [73] established many of the first results for optimal graph spar-

sification (i.e. measurement subset selection) in the setting of SLAM. The convex

relaxation they consider is perhaps the closest existing work in the literature to ours.

However, in contrast to the approach we present in Chapter 6, they consider the

D-optimality criterion, while the results in Chapter 5 as well as previous work on

Cramér-Rao bounds [17, 33] strongly suggest that the quantity of interest with regard

to estimation performance is the algebraic connectivity, and therefore the E-optimality

criterion.2 More practically, the E-optimality criterion is both less computationally

expensive to compute and to optimize.

Several methods have been proposed to reduce the number of states which need

to be estimated in a SLAM problem (e.g. [22, 23, 64, 68]), typically by marginalizing

out state variables. This procedure is usually followed by an edge pruning operation

to mitigate the unwanted increase in graph density. Previously considered approaches

rely on linearization of measurement models at a particular state estimate in order

to compute approximate marginals and perform subsequent pruning. Consequently,

little can be said concretely about the quality of the statistical estimates obtained from

the sparsified graph compared to the original graph. In contrast, our approach does

not require linearization, and provides explicit performance guarantees on the graph

algebraic connectivity as compared to the globally optimal algebraic connectivity

(which is itself linked to both the best and worst case performance of estimators

applied to the SLAM problem).

2Of course, by maximizing the smallest eigenvalue, the E-optimality criterion also selects for
information matrices with larger determinant.
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2.2 Notation and mathematical preliminaries

Lie groups and matrix manifolds: We will make use of the matrix realizations of

several Lie groups, most prominently the 𝑑-dimensional special Euclidean and special

orthogonal groups, denoted SE(𝑑) and SO(𝑑), respectively. SE(𝑑) can be realized as

a matrix group according to:

SE(𝑑) ,

⎧⎨⎩
⎡⎣𝑅 𝑡

0 1

⎤⎦ ∈ R(𝑑+1)×(𝑑+1) | 𝑅 ∈ SO(𝑑), 𝑡 ∈ R𝑑

⎫⎬⎭ , (2.1)

and the group SO(𝑑) can be realized as:

SO(𝑑) ,
{︀
𝑅 ∈ R𝑑×𝑑 | 𝑅𝑇𝑅 = 𝐼𝑑, det(𝑅) = 1

}︀
, (2.2)

where 𝐼𝑑 is the (𝑑 × 𝑑) identity matrix. The Stiefel manifold St(𝑘, 𝑛) is the set of

orthonormal 𝑘-frames in R𝑛 (𝑘 ≤ 𝑛):

St(𝑘, 𝑛) ,
{︀
𝑉 ∈ R𝑛×𝑘 | 𝑉 T𝑉 = 𝐼𝑘

}︀
. (2.3)

Linear algebra: For a symmetric matrix 𝑆, 𝑆 ⪰ 0 denotes that 𝑆 is positive-

semidefinite. The eigenvalues of a symmetric matrix 𝑆 ∈ R𝑛×𝑛 are denoted 𝜆1(𝑆) ≤

𝜆2(𝑆) ≤ . . . ≤ 𝜆𝑛(𝑆). We will also consider several block-structured matrices, and

make use of a few special operators acting on them. Following the notation of Rosen

et al. [118], given square matrices 𝐴𝑖 ∈ R𝑑×𝑑, 𝑖 = 1, . . . , 𝑛, we let Diag(𝐴1, . . . .𝐴𝑛)

denote the matrix direct sum (i.e., the block-diagonal matrix having 𝐴1, . . . , 𝐴𝑛 as its

diagonal blocks). Furthermore, given a block-structured matrix 𝐵, let BlockDiag𝑑(𝐵)

denote the operator extracting a 𝑑 × 𝑑 block-diagonal matrix from 𝐵. Finally, let

SBD(𝑑, 𝑛) denote the set of 𝑑𝑛 × 𝑑𝑛 symmetric block-diagonal matrices with diag-

onal blocks of size 𝑑 × 𝑑, and SymBlockDiag𝑑(𝐴) be the operator extracting the

symmetrization of the 𝑑× 𝑑 block-diagonal part of 𝐴.
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Probability and statistics: We denote the multivariate Gaussian distribution

with mean 𝜇 ∈ R𝑑 and covariance Σ ∈ S𝑑+ as 𝒩 (𝜇,Σ). We denote the isotropic

Langevin distribution on SO(𝑑) with mode 𝑀 ∈ SO(𝑑) and concentration parameter

𝜅 ≥ 0 as Langevin(𝑀,𝜅); this is the distribution whose probability density function

is:

𝑝(𝑅;𝑀,𝜅) =
1

𝑐𝑑(𝜅)
exp

(︀
𝜅 tr

(︀
𝑀𝑇𝑅

)︀)︀
, (2.4)

with respect to the Haar measure on SO(𝑑), with 𝑐𝑑(𝜅) a normalization constant.

For an unknown variable 𝑍 we aim to infer, we denote its true (latent) value by

¯
𝑍 and a noisy measurement of 𝑍 by 𝑍. We use the notation 𝑝(𝑋 | 𝑍) to denote the

conditional distribution on a variable, 𝑋, given another, 𝑍. When conditioning on a

particular (fixed) assignment to 𝑍, e.g. 𝑍 = 𝑍, we will often write 𝑝(𝑋 | 𝑍) when we

mean 𝑝(𝑋 | 𝑍 = 𝑍).

Gauge-invariant distance metrics: A key property of many of the geometric

estimation problems we consider (particularly in Chapters 5 and 6) is that they admit

infinitely many solutions due to gauge symmetry. We therefore define the following

orbit distances in order to compare solutions to the rotation estimation problems

encountered in Chapters 5 and 6 in a symmetry-aware manner:

𝑑𝒮(𝑋, 𝑌 ) , min
𝐺∈SO(𝑑)

‖𝑋 −𝐺𝑌 ‖𝐹 , 𝑋, 𝑌 ∈ SO(𝑑)𝑛 (2.5a)

𝑑𝒪(𝑋, 𝑌 ) , min
𝐺∈O(𝑑)

‖𝑋 −𝐺𝑌 ‖𝐹 , 𝑋, 𝑌 ∈ O(𝑑)𝑛. (2.5b)

It will be convenient to “overload” the O(𝑑) orbit distance to act on elements of the

set 𝒴 ,
{︀
𝑌 ∈ R𝑑×𝑑𝑛 | 𝑌 𝑌 T = 𝑛𝐼𝑑

}︀
.3 That is, for 𝑋, 𝑌 ∈ 𝒴 :

𝑑𝒪(𝑋, 𝑌 ) , min
𝐺∈O(𝑑)

‖𝑋 −𝐺𝑌 ‖𝐹 . (2.6)

3The elements of 𝒴 admit a straightforward interpretation as transposed and re-scaled elements
of the Stiefel manifold St(𝑑, 𝑑𝑛) (see (2.3)).
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Each of these distances can be computed in closed form by means of a singular value

decomposition (see Rosen et al. [118, Theorem 5]).

2.3 Factor graphs and probabilistic models

A factor graph 𝒢 , {𝒱 ,ℱ , ℰ} with factor nodes 𝑓𝑘 ∈ ℱ , variable nodes 𝑣𝑖 ∈ 𝒱 , and

edges ℰ is a graphical representation of a product factorization of a function:

𝑓(𝒱) =
∏︁
𝑘

𝑓𝑘(𝒱𝑘)

𝒱𝑘 , {𝑣 ∈ 𝒱 | (𝑓𝑘, 𝑣) ∈ ℰ}.
(2.7)

From a representational standpoint, factor graphs are tremendously general. In par-

ticular, it’s straightforward to verify that any function 𝑓 can be decomposed in the

form of (2.7); simply consider the trivial factor graph containing a single factor node

adjacent to all variable nodes in 𝒱 . Second, it’s clear that there can be many factor

graphs 𝒢 representing the same function. The key benefit of factor graphs as a mod-

eling tool is only realized when we (as practitioners) are careful about the particular

factor graph we use to model our function. We benefit from factor graphs when we

specifically intend to explicate conditional independence relationships that we know

exist in our model. Furthermore, there is an important “compositional” property of

factor graphs that will be relevant in our applications to SLAM: as we will see, we

will often construct the function 𝑓(𝒱) dynamically online by adding new factors 𝑓𝑘

to 𝒢 which depend only on a local subset of 𝒱 (e.g. as a robot navigates through an

environment). In this setting, the conditional independence relationships for the full

model 𝑓(𝒱) need not be known a priori, knowledge of only the scope of individual

factors (the subset of variables a factor relates) is sufficient to explicate conditional

independence relations for the entire model. This is a property we will use exten-

sively throughout this thesis, and instances of its practical application will appear

specifically in Chapters 3, 4, and 5.

In this thesis (and broadly in SLAM applications), we are primarily interested in
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factor graphs as they appear in probabilistic models. In particular, we will often be

interested in determining the most probable value of some unobserved states Θ given a

set of measurements 𝑍 ∼ 𝑝(𝑍 |
¯
Θ) which are presumed to be sampled from a (known)

generative model 𝑝(𝑍 | Θ) conditioned on the true (unknown) values of the states
¯
Θ.

Both the measurements 𝑍 and the unknown states Θ may be continuous (i.e. they

may take on any value from an uncountable set) or discrete (taking on values from

a countable set of outcomes). In practical robot perception applications, continuous

states and measurements are usually elements of some (often, but not necessarily

connected) subset of Euclidean space, e.g. rotations represented as elements of the

special orthogonal groups SO(2) or SO(3), translations in R2 or R3, or rigid body

transformations represented as elements of SE(2) or SE(3). Discrete sets encountered

in application are essentially always enumerable (meaning they can be put in one-to-

one correspondence with a finite subset of natural numbers). Commonly encountered

examples include: binary variables in the set {0, 1}, used to indicate whether to

“keep” a particular measurement or discard it as an outlier, or to indicate contact

with the ground; association variables which may indicate multiple hypotheses about

which environmental landmark was observed in a given measurement; and categorical

variables, e.g. in the set {cat, dog, house, chair} indicating object classes.

Given this context, the most fundamental problems encountered in SLAM are

maximum a posteriori (MAP )inference and computing marginals. Specifically, the

problem of MAP inference is as follows:

Problem 1 (MAP inference). Given a set of measurements 𝑍, a model 𝑝(𝑍 | Θ)

relating measurements to unobserved states Θ, and a prior distribution 𝑝(Θ) over

unobserved states (which may be uniform), the problem of MAP inference is to de-

termine an argument Θ* maximizing the posterior probability 𝑝(Θ | 𝑍) over unknown
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states given the realized measurements 𝑍, i.e.:

Θ* = argmax
Θ

𝑝(Θ | 𝑍)

= argmax
Θ

𝑝(Θ, 𝑍 = 𝑍)

= argmax
Θ

𝑝(𝑍 | Θ)𝑝(Θ),

(2.8)

where in the second line we have used the fact that 𝑝(Θ | 𝑍) = 𝑝(Θ, 𝑍)/𝑝(𝑍) and

that the measurement values are constant with respect to the maximization. Note

that there may not be a unique maximizing argument in equation 2.8; in such cases

(in this thesis) we will be content with any maximizer.

The problem of marginal computation4 can be described as follows:

Problem 2 (Marginal computation). Given a set of measurements 𝑍, a model 𝑝(𝑍 |

Θ) relating measurements to unobserved states Θ, and a prior distribution 𝑝(Θ) over

unobserved states (which may be uniform), the problem of marginal computation for

a subset of states Θ𝑖 ⊂ Θ is to compute the distribution:

𝑝(Θ𝑖 | 𝑍) =
∫︁
Θ∖Θ𝑖

𝑝(Θ | 𝑍)

=
1

𝑝(𝑍)

∫︁
Θ∖Θ𝑖

𝑝(𝑍 | Θ)𝑝(Θ).

(2.9)

In applications, integrals of the form encountered in equation (2.9) for typical

forms of the model 𝑝(𝑍 | Θ) will often be computationally intractable and we will

settle for some approximation of the marginals of interest (for example the Laplace

approximation [13, Sec. 4.4] as we will encounter in Chapters 3 and 4).

In many robot perception tasks (including SLAM), it is common that an individual

measurement 𝑧𝑘 ∈ 𝑍 depends only on a small subset Θ𝑘 ⊂ Θ of states to be estimated.

For example, a global positioning system (GPS) measurement of a robot’s position
4Note that the marginals we consider here arise from integration or summation over the values

of the marginalized variables. We will also discuss max -marginals in this thesis; these are functions
obtained by replacing the integral in eq. (2.9) with a max over the same values. These operations
(summation and maximization) correspond to sum-product and max-product variable elimination
procedures for probabilistic graphical models (cf. [75] for a general reference).
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depends on the location of the robot at the time the measurement was taken, but not

where it was before or after the measurement. Similarly, the relative position of a

landmark as measured by a moving observer depends only on the pose of the observer

and the location of the landmark. These properties are reflected in the conditional

independence relationships that appear in our model. In particular, we will assume

that a measurement 𝑧𝑘 is independent of all other measurements 𝑍 ∖ {𝑧𝑘} and states

Θ ∖Θ𝑘 given the specific unknown states Θ𝑘 ⊂ Θ it relates. Formally, we say:

𝑝(𝑧𝑘 | Θ, 𝑍 ∖ {𝑧𝑘}) = 𝑝(𝑧𝑘 | Θ𝑘). (2.10)

The straightforward consequence of this conditional independence structure is that

the joint likelihood 𝑝(𝑍 | Θ) admits a factorization as:

𝑝(𝑍 | Θ) =
∏︁
𝑘

𝑝(𝑧𝑘 | Θ𝑘)

Θ𝑘 ⊂ Θ.

(2.11)

In turn, we recognize that the joint distribution 𝑝(Θ, 𝑍 = 𝑍) admits a very natural

factor graph representation 𝒢 = {𝒱 ,ℱ , ℰ} (of the form in eq. (2.7)) which explicates

the same conditional independence relations appearing in eq. (2.11), i.e.

𝑝(Θ, 𝑍) =
∏︁
𝑘

𝑓𝑘(Θ𝑘)

Θ𝑘 = {𝜃 ∈ Θ | (𝑓𝑘, 𝜃) ∈ ℰ} ,
(2.12)

where each factor 𝑓𝑘 is in correspondence with a measurement likelihood term of the

form 𝑝(𝑧𝑘 | Θ𝑘) or a prior term of the form 𝑝(Θ𝑘).
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2.4 Probabilistic inference as nonlinear optimization

Given the decomposition of the joint in eq. (2.12), we may rewrite the MAP inference

problem (Problem 1) in the following form:

Θ* = argmax
Θ

𝑝(Θ | 𝑍)

= argmax
Θ

𝑝(Θ, 𝑍)

= argmax
Θ

∏︁
𝑘

𝑓𝑘(Θ𝑘)

= argmin
Θ

∑︁
𝑘

− log 𝑓𝑘(Θ𝑘).

(2.13)

That is, we may obtain a MAP estimate Θ* by minimizing the negative logarithm of

the joint (evaluated at 𝑍 = 𝑍).

Everything we have done so far has been perfectly general. It will often be con-

venient, however, to restrict consideration to models where the optimization in eq.

(2.13) is equivalent to a nonlinear least-squares problem. Formally, we say:

Θ* = argmax
Θ

𝑝(Θ | 𝑍)

= argmin
Θ

∑︁
𝑘

‖𝑟𝑘(Θ𝑘)‖22,
(2.14)

for some (typically nonlinear) function 𝑟𝑘 : Ω → V mapping a subset of unknown

states Θ𝑘 to vectors in a subset V of R𝑛. It turns out that the conditions under which

the equivalence in eq. (2.14) hold are quite general (cf. Rosen et al. [120, Theorem

1]).5. If we further assume that 𝑓𝑘 ∈ 𝐶1(Ω) (by which we mean 𝑓𝑘 is continuously

differentiable on Ω, the space of values taken on by Θ𝑘), then a reasonable approach

for approximate inference would be to apply gradient-based numerical optimization

starting from an initial assignment to Θ. This is the approach taken by essentially

every state-of-the-art technique for MAP inference in graphical models that has been

applied to SLAM (cf. [21, 39, 119] for relevant reviews, and [60, 70] for specific

5In particular, it suffices to assume that factors 𝑓𝑘 are positive and bounded above.
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techniques).

2.5 Common examples of SLAM problems

The mathematical form of SLAM problems is essentially indistinguishable from the

more general Bayesian inference problems of MAP inference (Problem 1) and marginal

computation (Problem 2). There are three distinguishing considerations of SLAM

specifically that are not present in the more general forms of these problems: (1) the

particular (typically geometric) nature of the measurement models and states to be

estimated, (2) the need to construct a model incrementally and online, and (3) the

practical necessity of solving these problems (estimating unknown states) quickly (i.e.

in real time), even if this means resorting to approximation. With respect to the first

consideration, the following subsections provide exposition for the two most common

formulations of SLAM problems: landmark-based SLAM in which a robot aims build

a map of surrounding landmarks while localizing itself within that map, and pose-

graph SLAM in which all measurements are relative transforms (e.g. elements of

SE(3) for three-dimensional problems) between robot poses (also elements of SE(3)).

2.5.1 Landmark-based SLAM

In (three-dimensional) landmark-based SLAM (illustrated in Figure 2-2), we consider

the problem of inferring jointly a map of environmental landmarks 𝐿 , {ℓ1, . . . , ℓ𝑚}, ℓ𝑗 ∈

R3 and the trajectory of a robot 𝑋 , {𝑥1, . . . , 𝑥𝑛}, 𝑥𝑖 ∈ SE(3) given a subset of mea-

surements of their pairwise relationships (including, e.g. the relative position of a

landmark ℓ𝑗 in the frame of pose 𝑥𝑖, the relative SE(3) transform from one pose to

another, among others), denoted 𝑍.

A critical component of landmark-based SLAM is the determination of which (if

any) mapped landmark was measured during the observation 𝑧𝑘. This is referred to

as a correspondence problem or the data association problem, and it will be a key

focus of study in Chapter 4.
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Figure 2-2: Illustration of landmark-based SLAM. The example above illustrates
the problem of landmark-based SLAM where a robot simultaneously builds a map
of environmental landmarks (here represented as points on a coral reef) and uses
repeated observations of those landmarks to localize itself within a globally-consistent
coordinate frame (here represented by the axes on the bottom-left of the figure).

2.5.2 Pose-graph SLAM

In contrast to landmark-based SLAM, in pose-graph SLAM we only aim to estimate

the trajectory of a robot 𝑋 , {𝑥1, . . . , 𝑥𝑛}, 𝑥𝑖 ∈ SE(3) given (potentially noisy)

measurements �̃�𝑖𝑗 ∈ SE(3) of a subset of their true pairwise relative transforms
¯
𝑥−1
𝑖 ¯
𝑥𝑗.

In pose-graph SLAM, a place recognition system, for determining when an observation

is sufficiently “similar” to a previous one to suggest that our robot has returned to a

previous location, replaces explicit long-term data association for the purposes loop

closure (see Lowry et al. [82] for a review). Specific instances of pose-graph SLAM

problems will appear in Chapters 3, 5, and 6.
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Figure 2-3: Illustration of pose-graph SLAM. The example above illustrates
the problem of pose-graph SLAM. Here, a robot does not explicitly maintain a map
of landmarks, but visually similar observations are used to determine loop closures
in order to localize the robot within a globally-consistent coordinate frame (here
represented by the axes on the bottom-left of the figure).
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Chapter 3

Discrete-continuous smoothing and

mapping

The previous sections considered the motivation for this thesis and discussed relevant

preliminaries for understanding state-of-the-art techniques for inference in graphical

models (and their application to localization and mapping problems). This chapter

presents the first major contribution of this thesis.

Specifically, the probabilistic modeling approach described in the previous chapter

has become the dominant representational paradigm in robot perception applications,

appearing in a wide range of important estimation problems. This formalism has led

to the development of numerous algorithms and software libraries, such as GTSAM

[38], which provide flexible and modular languages for specifying and solving optimiza-

tion problems defined by these models (typically in terms of factor graphs). Among

the models relevant to robotics applications, discrete-continuous graphical models cap-

ture a great breadth of key problems arising in robot perception, task and motion

planning [54, Sec 3.2], and navigation, including data association, outlier rejection,

and semantic simultaneous localization and mapping (SLAM) [119] (see Figure 3-1).

Despite the importance of these models, while ad hoc solutions have been proposed

for particular problem instances, at present there is no off-the-shelf approach for hy-

brid problems that is either as general or as easy-to-use as similar methods for their

continuous-only or discrete-only counterparts. Notably, the state-of-the-art gradient-
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(a)

(b)

(c)

Figure 3-1: Discrete-continuous factor graphs in robotics. Factor graphs mod-
eling several relevant discrete-continuous robot perception problems. Discrete vari-
able nodes are colored red, continuous variable nodes are blue, and factor nodes are
black. (a) Switching systems: discrete states control the evolution of a continuous
process. (b) Outlier rejection: discrete inlier/outlier variables control whether a sub-
set of untrusted measurements should be used in estimating continuous variables. (c)
Point-cloud registration: discrete variables represent correspondences and the con-
tinuous variable is the relative transformation from a source to target point-cloud.

based approaches described in the previous chapters are not directly applicable in

this case. This is the problem that we address in this chapter.

Our key insight is that in many instances, while maximum a posteriori (MAP)

inference for graphical models containing both discrete and continuous variables is

hard (see e.g. [75, Sec. 14.3.1]), if we fix either the discrete or continuous variables,

local optimization of the other set is easy. Continuous optimization can be performed

using smooth, gradient-based methods, while discrete optimization can be performed

exactly for a fixed assignment to the continuous variables by means of standard max-
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product variable elimination [75, Sec. 13.2.1]. In turn, our approach can be perform

efficient inference in high-dimensional, nonlinear models commonly encountered in

robotics. Moreover, this approach naturally extends many of the additional desired

capabilities of an inference approach in robotics applications, such as incremental

computation [70] and uncertainty estimation (cf. [69]) to the hybrid setting.

Our contributions are as follows: From a robotics science standpoint, we show that

by leveraging the conditional independence structure of hybrid factor graphs com-

monly encountered in robotics problems, efficient local optimization can be performed

using alternating optimization, which we prove guarantees monotonic improvement

in the objective. Because our approach naturally respects the incremental structure

of many such problems, it easily scales to thousands of discrete variables without

the need to prune discrete assignments. From a systems standpoint, our discrete-

continuous smoothing and mapping (DC-SAM) library1 extends existing GTSAM

tools by adding (1) explicit constructions for hybrid discrete-continuous factors, (2)

a new solver capable of computing approximate solutions to the corresponding es-

timation problems, and (3) an approach for approximating uncertainties associated

with solutions to these problems which does not depend on the solver we employ

(and therefore is likely to be of independent interest). To the best of our knowledge,

these are the first openly-available tools for general discrete-continuous factor graphs

encountered in robotics applications. We demonstrate the application of our meth-

ods to point-cloud registration, robust pose graph optimization. In the next chapter,

we will make use of the tools and ideas developed in this chapter in application to

semantic SLAM.

3.1 Problem formulation

We are interested in determining the most probable assignment to a set of discrete

variables 𝐷 and continuous variables 𝐶 given a set of measurements 𝑍. Under the

1The DC-SAM library is currently available at https://www.github.com/
MarineRoboticsGroup/dcsam.
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assumption that each measurement 𝑧𝑘 is independent of all others given the subset of

variables 𝒱𝑘 ⊆ 𝒱 it relates, we can decompose the posterior 𝑝(𝐶,𝐷 | 𝑍) into a product

of measurement factors 𝑓𝑘, each of which depends only on a subset of variables 𝒱𝑘
(cf. eq. (2.11)):

𝑝(𝐶,𝐷 | 𝑍) ∝
∏︁
𝑘

𝑓𝑘(𝒱𝑘),

𝒱𝑘 , {𝑣 ∈ 𝒱 | (𝑓𝑘, 𝑣) ∈ ℰ},
(3.1)

where each factor 𝑓𝑘 is in correspondence with either a measurement likelihood of

the form 𝑝(𝑧𝑘 | 𝒱𝑘) or a prior 𝑝(𝒱𝑘). From (3.1), the posterior 𝑝(𝐶,𝐷 | 𝑍) can be

decomposed into factors 𝑓𝑘 of three possible types: discrete factors 𝑓𝑘(𝐷𝑘) where𝐷𝑘 ⊆

𝐷, continuous factors 𝑓𝑘(𝐶𝑘), 𝐶𝑘 ⊆ 𝐶, and discrete-continuous factors 𝑓𝑘(𝐶𝑘, 𝐷𝑘).

In turn, the maximum a posteriori inference problem can be posed in terms of the

following adaptation of Problem 1:

𝐶*, 𝐷* = argmax
𝐶,𝐷

𝑝(𝐶,𝐷 | 𝑍)

= argmax
𝐶,𝐷

∏︁
𝑘

𝑓𝑘(𝒱𝑘)

= argmin
𝐶,𝐷

∑︁
𝑘

− log 𝑓𝑘(𝒱𝑘).

(3.2)

That is to say, we can maximize the posterior probability 𝑝(𝐶,𝐷 | 𝑍) by minimizing

the negative log posterior, which in turn decomposes as a summation. Though the

theoretical aspects of the methods we propose are quite general, in application we

will primarily be concerned with factor graphs in which maximum likelihood estima-

tion (or maximum a posteriori inference) can be represented in terms of a nonlinear

least-squares problem, which permits the application of incremental nonlinear least-

squares solvers like iSAM2 [70].2 In particular, we consider discrete-continuous factors

2As we note in Section 2.3, this turns out not to be particularly restrictive, as any factor which
is positive and bounded admits an equivalent representation in terms of a nonlinear least-squares
cost function for the purposes of optimization.
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(a) Discrete solve iteration. (b) Continuous solve iteration.

Figure 3-2: Overview of a single iteration of optimization. (a) First, given an
initial iterate 𝐶(𝑖) we solve exactly for the optimal assignment to the discrete variables
using max-product elimination. (b) Next, given the latest assignment to the discrete
variables, we update the continuous variables (e.g. using a trust-region method [117]).
Color depicts the objective value of a solution, ranging from low cost (blue) to high
cost (red).

𝑓𝑘(𝐶𝑘, 𝐷𝑘) admitting a description as:

− log 𝑓𝑘(𝐶𝑘, 𝐷𝑘) = ‖𝑟𝑘(𝐶𝑘, 𝐷𝑘)‖22,

𝐶𝑘 ⊆ 𝐶, 𝐷𝑘 ⊆ 𝐷,
(3.3)

where the function 𝑟𝑘 : Ω × D → R𝑚, Ω ⊆ R𝑑, D ⊆ N|𝐷|
0 is first-order differentiable

with respect to 𝐶. We consider factors involving only continuous variables admitting

an analogous representation. We place no restriction on discrete factors.

3.2 Overview of the approach

The following subsections describe our approach to solving optimization problems

of the form in (3.2). In Section 3.2.1, we outline our core alternating minimization

procedure and prove that our approach guarantee monotonic descent guarantees. In

Section 3.2.2, we describe how our approach can easily benefit from existing incre-

mental optimization techniques to efficiently solve large-scale estimation problems.

Finally, in Section 3.2.3, we consider the issue of estimating uncertainties for the

solutions provided by our method.
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3.2.1 Alternating minimization

In general, the MAP inference problem in (3.2) is computationally intractable [75,

Sec. 13.1.1]. Indeed, even the purely continuous estimation problems arising in robot

perception are typically NP-hard, including rotation averaging and pose-graph SLAM

[119]. Despite this, smooth (local) optimization methods often perform quite well on

such problems, both in their computational efficiency (owing to the fact that gradient

computations are typically inexpensive) and quality of solutions when a good initial-

ization can be supplied. However, even if we assume the ability to efficiently solve

continuous estimation problems, the introduction of discrete variables complicates

matters considerably: in the worst-case, solving for the joint MAP estimate globally

requires that for each assignment to the discrete states we solve a continuous opti-

mization subproblem, and discrete state spaces grow exponentially in the number of

discrete variables under consideration. Consequently, efficient approximate solutions

are needed.

Our key insight is that we can leverage the conditional independence structure of

the factor graph model to develop an efficient local optimization method which we

prove guarantees monotonic improvement in the posterior probability. To motivate

our approach, we first observe that if we fix any assignment to the discrete states,

the only variables remaining are continuous and approximate inference can be per-

formed efficiently using smooth optimization techniques [70], [117]. In this sense, if we

happened to know the assignment to the discrete variables, continuous optimization

becomes “easy.” On the other hand, if we fix an estimate for the continuous variables,

we are left with an optimization problem defined over a discrete factor graph which

can be solved to global optimality using max-product variable elimination [75, Sec.

13.2.1], but in the worst case may still require exploration of exponentially many dis-

crete states. However, it turns out that for many commonly encountered problems,

we can often do much better than the worst case.

For example, consider a partition of the discrete states into mutually exclusive
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subsets 𝐷𝑗 ⊆ 𝐷 which are conditionally independent given the continuous states:

𝑝(𝐷 | 𝐶,𝑍) ∝
∏︁
𝑗

𝑝(𝐷𝑗 | 𝐶,𝑍). (3.4)

It is straightforward to verify from the mutual exclusivity of each set𝐷𝑗 that the prob-

lem of optimizing the conditional in (3.4) then breaks up into subproblems involving

each 𝐷𝑗:

max
𝐷

𝑝(𝐷 | 𝐶,𝑍) ∝
∏︁
𝑗

[︂
max
𝐷𝑗

𝑝(𝐷𝑗 | 𝐶,𝑍)
]︂
. (3.5)

Critically, we have exchanged computation of the maximum of the product with

the product of each maximum computed independently. In cases where the discrete

states decompose into particularly small subsets (|𝐷𝑗| ≪ |𝐷|), inference may be

carried out efficiently. Many hybrid optimization problems encountered in robotics

admit such advantageous conditional independence structures. For example, Figures

3-1b and 3-1c, depicting robust pose graph optimization and point-cloud registration,

respectively, admit a decomposition of the form in equation (3.4) where each subset

𝐷𝑗 contains only a single discrete variable. Moreover, some discrete factor graphs do

not decompose quite so drastically after conditioning on continuous states, but may

still permit efficient inference. For example, Figure 3-1a depicts a switching system

in which, after conditioning on the continuous variables, the resulting discrete graph

is a hidden Markov model, for which the most probable assignment to the discrete

states can be computed in polynomial time using the Viterbi algorithm [140].

In turn, we will use these ideas to construct an algorithm for efficiently producing

solutions to problems of the form in (3.2).3 Consider the negative log posterior,

defined as:

ℒ(𝐶,𝐷) , − log 𝑝(𝐶,𝐷 | 𝑍). (3.6)

3The approach we present does not require that a model admit a conditional factorization like the
one in equation (3.4), though it improves computational efficiency considerably (see Section 3.4.1
for a discussion).
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From (3.2), the joint optimization problem of interest can be formulated as:

𝐶*, 𝐷* = argmin
𝐶,𝐷

ℒ(𝐶,𝐷). (3.7)

Our alternating minimization approach (depicted in Figure 3-2) proceeds as follows:

first, fix an initial iterate 𝐶(𝑖). Then, we aim to solve the following subproblems:

𝐷(𝑖+1) = argmin
𝐷
ℒ(𝐶(𝑖), 𝐷) (3.8a)

𝐶(𝑖+1) = argmin
𝐶
ℒ(𝐶,𝐷(𝑖+1)). (3.8b)

We may then repeat (3.8a) and (3.8b) until the relative decrease in ℒ(𝐶,𝐷) is suffi-

ciently small or we have reached a maximum desired number of iterations. Finding

minimizers for the subproblems (3.8a) and (3.8b) may still be challenging. Fortu-

nately, one need not find a minimizer for the subproblems (3.8a) and (3.8b) in order

for our approach to ensure monotonic improvements to the objective. In particular,

we require only that at each iteration the following descent criteria hold:

ℒ(𝐶(𝑖), 𝐷(𝑖+1)) ≤ ℒ(𝐶(𝑖), 𝐷(𝑖)) (3.9a)

ℒ(𝐶(𝑖+1), 𝐷(𝑖+1)) ≤ ℒ(𝐶(𝑖), 𝐷(𝑖+1)). (3.9b)

There are many methods for updating the discrete and continuous states that satisfy

(3.9a) and (3.9b), respectively. For the discrete states, the descent criterion in (3.9a)

can be ensured by using the max-product algorithm to compute the optimal solution

to the subproblem in (3.8a). For the continuous states, the descent criterion in (3.9b)

can be guaranteed by, for instance, using a trust region method (e.g. [117]) to refine

the continuous states with respect to the objective in (3.8b) . In turn, we obtain the

following proposition:

Proposition 1. Let ℒ(𝐶,𝐷) be the objective to be minimized, with initial iterate

𝐶(0), 𝐷(0). Suppose that at each iteration, the discrete update satisfies the descent cri-

terion in (3.9a) and likewise for the continuous update in (3.9b). Then, the estimates
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𝐶(𝑖), 𝐷(𝑖) obtained by alternating optimization satisfy:

ℒ(𝐶(0), 𝐷(0)) ≥ ℒ(𝐶(1), 𝐷(1)) ≥ . . . ≥ ℒ(𝐶(𝑇 ), 𝐷(𝑇 )). (3.10)

That is, this procedure ensures monotonic improvement in the objective.

Proof. Fix an initial iterate (𝐶(𝑖), 𝐷(𝑖)). By hypothesis, after a discrete update, we

have ℒ(𝐶(𝑖), 𝐷(𝑖+1)) ≤ ℒ(𝐶(𝑖), 𝐷(𝑖)) (from (3.9a)). Consequently, the updated assign-

ment comprised of the pair (𝐶(𝑖), 𝐷(𝑖+1)) is at least as good as the previous assign-

ment. By the same reasoning, performing a subsequent continuous update gives a

pair (𝐶(𝑖+1), 𝐷(𝑖+1)) satisfying ℒ(𝐶(𝑖+1), 𝐷(𝑖+1)) ≤ ℒ(𝐶(𝑖), 𝐷(𝑖+1)) (from (3.9b)). Com-

bining these inequalities, we have:

ℒ(𝐶(𝑖+1), 𝐷(𝑖+1)) ≤ ℒ(𝐶(𝑖), 𝐷(𝑖+1)) ≤ ℒ(𝐶(𝑖), 𝐷(𝑖)). (3.11)

The above chain of inequalities holds for all 𝑖, completing the proof.

3.2.2 Online, incremental inference

Many robotics problems naturally admit incremental solutions wherein new informa-

tion impacts only a small subset of the states we would like to estimate. Because

our alternating minimization approach relies only upon the ability to provide an im-

provement in each of the separate discrete and continuous subproblem steps, we can

rely on existing techniques to solve these problems in an incremental fashion. In

particular, in the continuous optimization subproblem, we use iSAM2 [70] to refactor

the graph containing continuous variables into a Bayes tree, permitting incremental

inference of the continuous variables. Similarly, owing to the discrete factorization in

(3.4), if, for example, we introduce new discrete variables which are conditionally in-

dependent of all previous discrete states given the current continuous state estimate,

we are able to solve for the most probable assignment to these variables without the

need to recompute solutions for previously estimated variables. In turn, we are able

to efficiently solve online inference problems, as we will demonstrate in Section 4, in
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which we produce solutions to online SLAM problems.

3.2.3 Recovering marginals

Uncertainty representation is important in many applications of robot perception.

DC-SAM supports post hoc recovery of approximate marginal distributions for dis-

crete and continuous variables from an estimate. For continuous variables, we use

the Laplace approximate [13, Sec. 4.4] adopted by several nonlinear least-squares

solvers (Ceres, g2o, and GTSAM). In particular, we fix a linearization point for the

continuous variables (and a current estimate for discrete variables) and compute an

approximate linear Gaussian distribution centered at this linearization point. For

discrete variables, we fix an assignment to the continuous variables and compute the

exact discrete marginals conditioned on this linearization point using sum-product

variable elimination [75, Ch. 9-10]. The marginals we recover, then are:

𝑝(𝐷𝑗 | 𝐶,𝑍) =
∑︁
𝐷∖𝐷𝑗

𝑝(𝐷 | 𝐶,𝑍), 𝐷𝑗 ⊆ 𝐷, (3.12a)

𝑝(𝐶𝑗 | �̂�, 𝑍) =
∫︁
𝐶∖𝐶𝑗

𝑝(𝐶 | �̂�, 𝑍), 𝐶𝑗 ⊆ 𝐶. (3.12b)

The reason for this approach is that in general, the number of posterior modes cap-

tured by a particular (discrete-continuous) factor graph can grow combinatorially.

Computing exact marginals (i.e. determining exact solutions to Problem 2) can eas-

ily become intractable. In contrast, by making use of the conditional factorization

in (3.4), solving for the discrete marginals in (3.12a) is often tractable.4 Notably,

our approach to marginal recovery does not require that one use the alternating min-

imization strategy outlined in Section 3.2.1; any method of providing an estimate

(𝐶, �̂�) will suffice.

The continuous marginals in (3.12b) are estimated using the Laplace approxima-

tion [69]. In our derivation, it will be convenient to consider the continuous states as

4It is also interesting to note that the discrete marginals we recover are exactly the “weights”
computed in the expectation step of the well-known expectation-maximization (EM) algorithm [42].
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a vector 𝐶 ∈ R𝑑. Assume the point (𝐶, �̂�) is a critical point of the continuous sub-

problem (3.8b), i.e. ∇ℒ(𝐶, �̂�)|𝐶 = 0. Consider a Taylor expansion of the objective

ℒ(𝐶, �̂�) about the point 𝐶:

ℒ(𝐶, �̂�) ≈ ℒ(𝐶, �̂�)− 1

2
𝐴
(︁
𝐶 − 𝐶

)︁
, (3.13)

with the 𝑑× 𝑑 Hessian matrix 𝐴 defined as:

𝐴 , −∇2ℒ(𝐶, �̂�)|𝐶 . (3.14)

Exponentiating both sides of (3.13) and appropriately normalizing the result gives

the linear Gaussian approximation:

𝑝(𝐶 | �̂�, 𝑍) ≈ |𝐴|
1/2

(2𝜋)𝑑/2
exp

{︂
−1

2
‖𝐶 − 𝐶‖2𝐴−1

}︂
, (3.15)

where ‖𝑐‖𝐴−1 denotes the Mahalanobis norm
√
𝑐T𝐴𝑐. When all factors involving

continuous variables take the form in (3.3), the locally linear approximation of ℒ

about 𝐶 admits a Hessian 𝐴 which can be expressed in terms of the Jacobian of

the measurement function 𝑟, and we have 𝐴 ⪰ 0 [40]. Additionally, the relevant

components of the matrix 𝐴 for estimating the marginals for a subset of variables 𝐶𝑗

can be recovered from its square root, i.e. the square-root information matrix (cf.

[69]).

3.3 Example applications

In the following sections we provide example applications motivated by typical robot

perception problems. In Section 3.3.1 we demonstrate application of DC-SAM to the

problem of point-cloud registration and show that it naturally generalizes the well-

known iterative closest point (ICP) method [12, 32]. In Section 3.3.2, we consider the

problem of robust pose graph optimization, where we aim to estimate a set of poses

given only noisy measurements between a subset of them, and some fraction of those
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(a) Point-cloud registration

(b) Robust pose graph optimization

Figure 3-3: Example applications. (a) Point-cloud registration using the Stanford
Dragon dataset [37]. (b) Robust pose graph optimization using the Sphere dataset
[70]. Each row displays the sequence of iterates for our method. In each case, we
obtain high-quality solutions in just a few iterations.

measurements may be outliers. We implement a straightforward approach to solving

this problem using DC-SAM and show that it produces competitive results.

3.3.1 Point-cloud registration

As a simple first example, we will consider the point-cloud registration problem.

Consider a source point-cloud 𝒫𝑆 = {𝑝𝑆𝑖 ∈ R𝑑, 𝑖 = 1, . . . , 𝑛} and target point-cloud

𝒫𝑇 = {𝑝𝑇𝑗 ∈ R𝑑, 𝑗 = 1, . . . ,𝑚}. Associate with each point in the source cloud 𝑝𝑆𝑖 a

discrete variable 𝑑𝑖 ∈ {1, . . . ,𝑚} determining the corresponding point in the target

cloud. The goal of point-cloud registration is to identify the rigid-body transformation

𝑇 ∈ SE(3) that minimizes the following objective:

min
𝑇∈SE(3)

𝑛∑︁
𝑖=1

‖𝑇𝑝𝑆𝑖 − 𝑝𝑇𝑑𝑖‖
2
2. (3.16)

The key challenge encountered in this setting is that the correspondence variables 𝑑𝑖

are unknown and unobserved. We might consider, then, introducing the correspon-

dence variables into the optimization, to determine the best set of correspondence

variables and the corresponding rigid-body transformation of the point-cloud, ob-
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taining the following problem:

min
𝑑𝑖∈1:𝑚,𝑇∈SE(3)

𝑛∑︁
𝑖=1

‖𝑇𝑝𝑆𝑖 − 𝑝𝑇𝑑𝑖‖
2
2. (3.17)

Unfortunately, this problem is nonconvex and solving it to global optimality is, in

general, NP-hard, requiring search over 𝒪(𝑛𝑚) discrete state assignments.

A popular algorithm for solving the problem in equation (3.17) is to first posit an

initial guess for the transformation 𝑇 , determine the transformed locations of each

of the points in the source cloud, then associate each point in the source cloud with

the nearest point in the target cloud after the transformation. This is the iterative

closest point (ICP) algorithm [12, 32]. Defining 𝑟𝑖(𝑇, 𝑑𝑖) = 𝑇𝑝𝑆𝑖 − 𝑝𝑇𝑑𝑖 , we can see that

the problem in equation (3.17) is concisely described in terms of factors of the form

(3.3). Moreover, the conditional independence structure of the graph corresponding

to this problem (depicted in Figure 3-1) immediately motivates our alternating opti-

mization approach, since each 𝑑𝑖 in fact decouples when conditioned on 𝑇 . Finally,

one can verify that our alternating optimization procedure turns out to be identical

to ICP (as described above) in this setting. To demonstrate this fact, we applied our

method to point cloud registration using the Stanford Dragon dataset [37], the results

of which are depicted in Figure 3-3a. Indeed, we observe that our approach produces

qualitatively reasonable results in just a few iterations. Moreover, while implement-

ing ICP typically requires that we explicitly write the (independent) correspondence

updates and transform update, we need not encode this explicitly at all: the fact

that the discrete (correspondence) update separates into independent subproblems is

simply a consequence of the conditional independence structure of the factor graph

model in Figure 3-1c. That said, our approach does not have knowledge about the

particular spatial structure of the problem and therefore performs naïve search over

discrete assignments. In contrast, a typical implementation of ICP would make use of

efficient spatial data structures to speed up the solution to the discrete subproblem,

see [122] (indeed, such optimizations for particular problems like this would make for

interesting future applications of the DC-SAM library). However, unlike any partic-
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ular ICP implementation, our solver can be readily extended (without modification)

to more complex cost functions or models because the structure of the subproblems

is dictated by the independence structure inherent in the graphical model.

3.3.2 Robust pose graph optimization

In this section we consider robust pose graph optimization. Recall (from Section

2.5.2) that in pose graph optimization we are interested in estimating a set of poses

𝑥1, . . . , 𝑥𝑛 ∈ SE(3) from noisy measurements �̃�𝑖𝑗 of a subset of their (true) relative

transforms
¯
𝑥𝑖𝑗 =

¯
𝑥−1
𝑖 ¯
𝑥𝑗. This problem possesses a natural graphical structure 𝒢 =

{𝒱 , ℰ⃗} where nodes correspond to the poses 𝑥𝑖 to be estimated and edges correspond

to the available noisy measurements between them. Pose graph optimization then

aims to solve the following problem:

min
𝑥𝑖∈SE(3)

∑︁
{𝑖,𝑗}∈ℰ⃗

⃦⃦
log

(︀
�̃�−1
𝑖𝑗 𝑥

−1
𝑖 𝑥𝑗

)︀∨⏟  ⏞  
𝑟𝑖𝑗(𝑥𝑖,𝑥𝑗)

⃦⃦2

Σ
, (3.18)

where log(·)∨ : SE(3) → R6 takes an element of SE(3) to an element of the tangent

space (cf. [8, Sec. 8.3.2]), and Σ ∈ R6×6 is a covariance matrix.

Suppose however, that some fraction of our measurements are corrupted by an un-

known outlier process. We would like to determine the subset of outlier measurements

and inlier measurements, as well as the corresponding optimal poses. It is typical to

assume that the edges ℰ⃗ partition into a set of trusted odometry edges ℰ⃗𝒪 and a set of

untrusted loop closure edges ℰ⃗ℒ. It is common to address this problem by introducing

binary variables 𝑑𝑖𝑗 ∈ {0, 1} for each of the untrusted edges (cf. [3, 105, 127, 133]),

where 𝑑𝑖𝑗 = 1 indicates that the measurement �̃�𝑖𝑗 is drawn from the outlier process.

Since the outlier distribution is unknown, it is common to assume that the outlier

generating process is Gaussian with covariance Σ̃ ≻ Σ much larger than the inlier

model covariance. In turn, the problem of interest can be posed as follows:

min
𝑥𝑖∈SE(3)
𝑑𝑖𝑗∈{0,1}

∑︁
{𝑖,𝑗}∈ℰ⃗𝒪

‖𝑟𝑖𝑗(𝑥𝑖, 𝑥𝑗)‖2Σ +
∑︁

{𝑖,𝑗}∈ℰ⃗ℒ

𝑒𝑖𝑗(𝑥𝑖, 𝑥𝑗, 𝑑𝑖𝑗), (3.19)
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(a) Intel

(b) CSAIL

(c) Sphere

(d) Garage

Figure 3-4: Robust pose graph optimization. Average trajectory errors on (a)
the Intel dataset, (b) the CSAIL dataset, (c) the Sphere dataset, and (d) the Garage
dataset. Left to right: translation error, rotation error, and computation time. Statis-
tics computed over 10 Monte Carlo trials. LM refers to the result obtained by running
Levenberg-Marquardt on the corrupted graph.
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where

𝑒𝑖𝑗(𝑥𝑖, 𝑥𝑗, 𝑑𝑖𝑗) ,

⎧⎪⎨⎪⎩− log𝜔0 + ‖𝑟𝑖𝑗(𝑥𝑖, 𝑥𝑗)‖2Σ, 𝑑𝑖𝑗 = 0,

− log𝜔1 + ‖𝑟𝑖𝑗(𝑥𝑖, 𝑥𝑗)‖2Σ̃, 𝑑𝑖𝑗 = 1,

(3.20)

and 𝜔0, 𝜔1 ∈ [0, 1] are prior weights on the inlier and outlier hypotheses, respectively.

Letting |ℰ⃗ℒ| = 𝑚, there are 𝒪(2𝑚) possible assignments to the discrete variables in

this problem. However, the above formulation can easily be represented in terms of

discrete factors for the weights 𝜔0, 𝜔1 and discrete-continuous factors of the form in

(3.3) to switch between the Gaussian inlier and outlier hypotheses. Moreover, once

again, the discrete variables decouple from one another conveniently when we condi-

tion on an assignment to the continuous variables (Fig. 3-1b shows the corresponding

graph).

In our experimental setup, we corrupt pose graphs with outliers generated between

a random pair of (non-adjacent) poses with relative translation sampled uniformly

from a cube of side-length 10 meters and rotation sampled from the uniform distri-

bution over rotations (a similar process to the one described in [138, Section VI.C]).

Based on the prior work of Olson and Agarwal [105], we made the outlier covariance

model isotropic with variance 107 times larger than the inlier variance and set the

weights 𝜔0, 𝜔1 to be the corresponding Gaussian normalizing constants. We pro-

vide two points of comparison: a Levenberg-Marquardt (LM) solver applied to the

graph corrupted by outliers (as a “worst case”) and the state-of-the-art graduated

nonconvexity (GNC) solver [145].5 Our results are summarized in Figure 3-4. In

particular, we observe that in the cases that we are able to supply a high-quality

initialization, optimization using our approach enables recovery of accurate SLAM

solutions significantly faster than the GNC approach (and in some cases, faster than

the non-robust baseline).6 Our approach is susceptible to local optima (leading to

5We use the GNC approach implemented in GTSAM with the truncated least-squares cost. We
use the default parameters from the GTSAM implementation, though the performance of GNC
(in terms of computation time and solution quality) may be improved over the results shown here
through further parameter tuning.

6The computation speed of our approach is primarily derived from two factors: first, we exploit
efficient incremental optimization via iSAM2, and second, our optimization procedure is purely
local, as opposed to GNC which requires solving re-weighted variants of the original pose graph
optimization problem several times in an effort to improve robustness to initialization.
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suboptimal performance on the CSAIL dataset). We will revisit this issue in Section

3.4.2.

3.4 Discussion

3.4.1 When is alternating minimization efficient?

The conditional factorization in equation (3.4) serves to give some intuition for when

our optimization approach is computationally efficient. If the distribution over dis-

crete variables conditioned on the continuous assignment admits a factorization into

small subsets 𝐷𝑗, then the optimization problem in (3.8a) decouples into separate

problems in direct correspondence with each set 𝐷𝑗. Since we perform exact infer-

ence on this distribution, solving for the most probable assignment is in the worst case

exponential in the size of 𝐷𝑗 [75]. Consequently, in graphs with densely connected

discrete variables that are not decoupled by continuous variables, the per iteration

complexity of alternating minimization can increase dramatically. That said, Propo-

sition 1 ensures monotonic improvement in the objective so long as each optimization

subproblem admits a solution no worse than the current iterate. Therefore, it is rea-

sonable to consider extending this approach by allowing for local optimization in the

discrete subproblem [126].

3.4.2 When can we ensure accurate solutions?

Though we are able to make some claims about when solutions to the discrete and

continuous subproblems in our alternating minimization approach can be tractably

computed, the question remains as to when one can ensure that these local search

methods recover high-quality solutions. Since the alternating minimization approach

is a descent method, we rely on the ability to provide a “good” initial guess from

which purely going “downhill” in the cost landscape is enough to obtain a high-

quality estimate. However, this is already a requirement of off-the-shelf tools for

solving many robot perception problems, such as pose-graph SLAM, which (by virtue
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of the nonconvexity of the optimization problems they attempt to solve) require high-

quality initialization [119].7 Nonetheless, the consideration of discrete variables can

make initialization more challenging. The specifics of providing an initial guess will

ultimately depend heavily on the application.

One can also attempt to reduce the initialization sensitivity of solutions obtained

by our local optimization approach. A number of methods along these lines have been

proposed. For example, graduated nonconvexity (GNC) [145] as discussed in Section

3.3.2, optimizes nonconvex functions by successively producing (and optimizing) a

more well-behaved (typically convex) surrogate. Sampling methods and simulated

annealing methods can improve convergence by allowing for the exploration of states

that may increase cost or by initializing a descent method like our proposed approach

from several starting points [86, 135]. Similarly, stochastic gradient descent is a

classical approach for nonconvex optimization (and has appeared in the setting of

robust pose-graph SLAM [104]), which could reasonably be adapted to our approach.

Finally, heuristics have been considered which use consistency of measurements to

filter out unlikely hypotheses [88] or to re-initialize estimates for factor graphs [84].

3.5 Summary

In this chapter we presented an approach to optimization in discrete-continuous

graphical models based on alternating minimization. Our key insight is that the

structure of the alternating optimization procedure allows us to leverage the condi-

tional independence relations exposed by factor graphs to efficiently perform local

search. We showed how the complexity of inference in this setting is related to

structure of the graphical model itself. Critically, we observed that many important

problems in robotics can be framed in terms of graphical models admitting particu-

larly advantageous structures for application of our approach. We provided a method

for addressing the issue of recovering uncertainties associated with estimates in the

7Moreover, even in these “simpler” problem instances, verification that a globally optimal solution
has been found has only been demonstrated for certain special cases (see [119, Sec 2] for a review)
and is otherwise itself an open problem.
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discrete-continuous setting. Our solver and associated tools are implemented as part

of our library, DC-SAM, which is, to the best of our knowledge, the first openly avail-

able library for addressing these hybrid discrete-continuous optimization problems.

Finally, we demonstrate the application of our method to the key problems of robust

pose graph optimization. In the next chapter, we will demonstrate another important

application of these tools and ideas to semantic SLAM.
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Chapter 4

Robust object-level semantic SLAM

As mentioned in Section 2.5.1, landmark-based SLAM hinges critically on data asso-

ciation, the ability to recognize previously mapped landmarks. Unfortunately, achiev-

ing consistent data association over long periods of operation, while vital for reliable

robot navigation in the operational regime as “time goes to infinity,” is far more diffi-

cult than short-term data association. In this regime a robot’s pose uncertainty may

grow large enough that many landmarks present reasonable loop closure candidates.

Consequently, data association is a major failure mode of modern navigation systems.

Indeed “regardless of the type of data association employed, it is highly likely that

if an estimation technique fails, the blame can be squarely placed on bad data as-

sociation” [8, p. 154]. For this reason, any mechanism by which we can associate

landmarks uniquely is of interest.

Recently, advances in the capabilities of learned perception models, especially

deep neural networks, motivate their use for the extraction of “higher-level” feature

descriptors or object-level semantic landmarks for mapping [134]. Not only do these

methods provide additional information that can be used to disambiguate environ-

mental landmarks, but often this information carries with it a semantic interpretation,

grounding the robot map representation in terms of objects. That said, no object de-

tection or recognition model could be expected to offer perfect performance over the

lifetime of a robot. In this chapter, we aim to build semantic map representations

that support robot navigation in a way that does not depend on perfect detection
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and classification of objects; rather we aim to construct estimation procedures that

may leverage the strengths of these methods but are robust to their failures. Solv-

ing this problem requires joint inference of discrete (data associations and landmark

classes) and continuous (robot poses and landmark locations) variables, which is fun-

damentally a computationally hard problem [39, 119]. In consequence, approximate

inference methods which remain computationally tractable in application are needed.

To that end, this chapter makes several contributions. First, we show that under

common assumptions on the factorization of the posterior over robot and landmark

states, the (latent) discrete association variables are conditionally independent, mak-

ing exact elimination possible [28]. Viewed through this lens, we show that prior work

on approximating sum-mixtures of Gaussians in SLAM using max-mixtures [105] in

fact arises directly from (exact) max-product elimination of discrete variables. More-

over, this suggests that the max-mixtures approach is best interpreted not simply as

a computationally tractable approximation to a sum-mixture (in the setting of non-

linear least-squares optimization for SLAM), but rather as an exact representation

of the factor graph model resulting from analytic elimination of association vari-

ables. Crucially, this perspective enables a natural generalization the max-mixtures

approach to the setting where landmark states and measurements are jointly discrete

and continuous (possessing a semantic class as well as a position), which is necessary

for its application to semantic SLAM problems. Our prior work [43, 46] made use

of similar ideas, but it was motivated as a computationally efficient approximation

which was primarily heuristic in nature. This chapter gives an exposition from the

perspective of inference in graphical models that makes the exactness of our approach

obvious. Second, we consider sum-product elimination of discrete variables. We give

a derivation of an expectation-maximization procedure for optimizing the resulting

marginal posterior over the remaining variables. This approach is formally equivalent

to that of Bowman et al. [18] and admits a convenient representation in terms a single

factor definition. Both of these approaches are capable of incorporating association

uncertainty in the setting of discrete-continuous landmark states in a computationally

tractable manner. Finally, we observe that the resulting MAP inference problem of
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interest is defined with respect to a hybrid model (including continuous states like

robot poses and landmark locations, as well as discrete landmark class variables), and

so to implement these ideas we employ the DC-SAM library and solver developed in

the previous chapter. We provide experimental validation of these approaches us-

ing real data from a mobile robot and the KITTI dataset [56], demonstrating their

practicality in real applications.

4.1 Problem statement

4.1.1 Semantic SLAM with unknown data association

Formally, we define the semantic SLAM problem in 3 dimensions as the inference

of robot poses 𝑋 , {𝑥𝑖 : 𝑥𝑖 ∈ SE(3), 𝑖 = 1, . . . 𝑁}, and semantic landmarks ℓ𝑗 ,

(ℓ𝜌𝑗 , ℓ
𝑐
𝑗), 𝑗 = 1, . . . ,𝑀 comprising the set 𝐿, where each landmark is split into a

(continuous) geometric component ℓ𝜌𝑗 ∈ R3 and a (discrete) semantic class component

ℓ𝑐𝑗 ∈ 𝒞 from a known set of class labels 𝒞 , {1, . . . , 𝐶}, given a set of measurements

𝑍. This fits the general landmark-based SLAM paradigm outlined in Section 2.5.1.

Moreover, this is a natural generalization of a purely geometric landmark-based SLAM

approach; by simply taking C = 1, we recover the usual geometric formulation. This

corresponds to the following maximum a posteriori (MAP) inference problem:

𝑋*, 𝐿* = argmax
𝑋,𝐿

𝑝(𝑋,𝐿 | 𝑍). (4.1)

When associations between measurements and map landmarks are unknown, they

must also be inferred during navigation. In particular, suppose there are 𝐾 land-

mark measurements with unknown associations. We introduce the discrete associa-

tion variables 𝐷 , {𝑑𝑘 : 𝑑𝑘 ∈ N≤𝑀 , 𝑘 = 1, . . . 𝐾}. Modifying the problem in (4.1) to

accommodate these data association variables, we obtain:

𝑋*, 𝐿*, 𝐷* = argmax
𝑋,𝐿,𝐷

𝑝(𝑋,𝐿,𝐷 | 𝑍). (4.2)
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Unfortunately, solving this problem to guaranteed global optimality is in general

intractable, requiring search over all 𝒪(𝑀𝐾) possible data association hypotheses.

In SLAM, we are primarily interested in the robot and landmark states, 𝑋 and 𝐿;

we are typically not concerned about the optimal assignments to the data association

variables themselves. Instead, then, we can consider eliminating the data association

variables. to form the following marginal MAP inference problem:

𝑋*, 𝐿* = argmax
𝑋,𝐿

[︁
max
𝐷

𝑝(𝑋,𝐿,𝐷 | 𝑍)
]︁
, (4.3a)

𝑋+, 𝐿+ = argmax
𝑋,𝐿

∑︁
𝐷

𝑝(𝑋,𝐿,𝐷 | 𝑍)⏟  ⏞  
𝑝(𝑋,𝐿|𝑍)

, (4.3b)

where here we are using the notation 𝑋+, 𝐿+ to distinguish the marginal MAP from

the MAP estimate itself, 𝑋*, 𝐿*. It would seem that we have not gained anything

computationally by eliminating data association variables. Indeed, it is straightfor-

ward to verify that (4.3a) is essentially a reorganization of terms in (4.2). Moreover,

the marginal distribution 𝑝(𝑋,𝐿 | 𝑍) =
∑︀

𝐷 𝑝(𝑋,𝐿,𝐷 | 𝑍) in (4.3b) is non-Gaussian,

even when the measurement models themselves are corrupted by Gaussian noise. As

we will show in Section 4.2, the key advantage of variable elimination in this setting

derives from the conditional independence structure of the graphical SLAM problem.

4.1.2 Problem Statement

The semantic SLAM formulations described in Section 4.1.1 are broad enough to

encompass a number of NP-hard problems (see, e.g. [75, 119]). In fact, the seman-

tic SLAM process is made even more challenging by the issue of false positives, i.e.

sensor measurements that occur with no landmark present, as well as the crucial

fact that the number of landmarks 𝑀 is not known beforehand; rather, it typically

grows during navigation. Consequently, we assume access to a reasonable landmark

hypothesis set ℋ𝑘 ⊆ 𝐿 for a landmark measurement 𝑧𝑘. Beyond this assumption, the

methods we present are not restricted to a particular class of measurement model.
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In this chapter, however, our application of interest is semantic SLAM, and we will

consider sensor configurations giving access to odometry measurements between sub-

sequent keyframes, geometric landmark measurements, and semantic landmark mea-

surements. All measurements of continuous variables are assumed to be corrupted

by additive Gaussian noise. We divide measurements into two types, corresponding

to odometry factors 𝜓𝑖𝑗 ∈ ℱ𝒪 between poses 𝑥𝑖 and 𝑥𝑗 and (ambiguous) landmark

measurements 𝜑𝑖𝑘 ∈ ℱℒ between a pose 𝑥𝑖, all landmarks in the hypothesis set ℋ𝑘,

and a discrete association variable 𝑑𝑘, giving the MAP inference problem:

max
𝑋,𝐿,𝐷

∏︁
𝜓𝑖𝑗∈ℱ𝒪

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗)
∏︁

𝜑𝑖𝑘∈ℱℒ

𝜑𝑖𝑘(𝑥𝑖,ℋ𝑘, 𝑑𝑘). (4.4)

We will also consider the maximum marginal estimation problem from (4.3b), which

can be written in terms of the above factorization as:

max
𝑋,𝐿

∑︁
𝐷

∏︁
𝜓𝑖𝑗∈ℱ𝒪

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗)
∏︁

𝜑𝑖𝑘∈ℱℒ

𝜑𝑖𝑘(𝑥𝑖,ℋ𝑘, 𝑑𝑘). (4.5)

Since our focus is primarily on the issue of data association, which involves only land-

mark measurements, it will be convenient throughout to abuse notation slightly by

defining a single function summarizing the joint likelihood of all odometry measure-

ments:

𝜓(𝑋) ,
∏︁

𝜓𝑖𝑗∈ℱ𝒪

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗), (4.6)

which do not depend on the associations. We assume that the landmark measurement

model factors into conditionally independent geometric and semantic components

given the association variable: i.e.:

𝜑(𝑥,ℋ, 𝑑) , 𝑝(𝑧 | 𝑥,ℋ, 𝑑)

= 𝑝(𝑧𝜌 | 𝑥, ℓ𝜌𝑑)𝑝(𝑧
𝑐 | ℓ𝑐𝑑),

(4.7)

where 𝑧𝜌 and 𝑧𝑐 are the geometric and semantic components of the measurement,

respectively. The geometric measurement likelihood 𝑝(𝑧𝜌 | 𝑥, ℓ𝜌𝑑) is taken to be Gaus-
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Figure 4-1: Conditional independence of data associations. In the setting of
landmark-based SLAM, data associations which are conditionally independent can
be analytically eliminated. The hypothesis sets ℋ𝑘 consist of sets of landmarks po-
tentially associated with the 𝑘-th measurement. The associations 𝑑1 and 𝑑2 are con-
ditionally independent given the values assigned to the variables in their separators
sets 𝒮𝑘 = ℋ𝑘 ∪ 𝑥𝑖 (respectively 𝑥𝑗).

sian with mean 𝑔(𝑥, ℓ𝜌𝑑) for some (typically nonlinear) measurement model 𝑔. In this

work, we will consider object detections providing access to range and bearing to a 3D

point (comprising the geometric measurement 𝑧𝜌), so 𝑔 gives the range and bearing

between a pose and a 3D point, and an object class label 𝑧𝑐. Finally, we assume

that odometry measurements and geometric landmark measurements are corrupted

by additive Gaussian noise, and we assume knowledge of the misclassification statis-

tics of the detector, 𝑝(𝑧𝑐 | ℓ𝑐𝑑), i.e. the probability that the detector outputs 𝑧𝑐 given

knowledge of the true class of the corresponding landmark, which could be expressed,

for example, in terms of the 𝐶 × 𝐶 confusion matrix for an object classifier.

4.2 Approach

The following subsections discuss the application of two approaches to eliminate data

association variables in the SLAM problem. Specifically, we describe max-product

elimination to solve the MAP inference problem described in (4.3a), and sum-product

elimination to address the marginal MAP inference problem in (4.3b). In the latter
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case, we describe an inference approach based on the expectation-maximization al-

gorithm (c.f. [18]). As we will show, each approach can conveniently be represented

in terms of a factor amenable to optimization using standard tools (e.g. GTSAM

[39]). Finally, we provide an approach for determining a reasonable hypothesis set in

Section 4.2.3.

4.2.1 From MAP inference to max-product elimination

First, we consider directly solving the MAP inference problem in (4.4). It is clear that

naïve search over all possible combinations association decisions would be intractable

even for modestly sized problems. However, we can simplify the problem considerably.

Since the association variables 𝐷 do not appear in the odometry factors within the

MAP inference problem (4.4), we can immediately rewrite the optimization as:

𝑝* = max
𝑋,𝐿

𝜓(𝑋)

[︃
max
𝐷

∏︁
𝑓𝑖𝑘∈ℱℒ

𝑓𝑖𝑘(𝑥𝑖,ℋ𝑘, 𝑑𝑘)

]︃
, (4.8)

where 𝑝* is the posterior probability attained by the MAP estimate. Now, each factor

𝑓𝑖𝑘 depends only on 𝑥𝑖, ℋ𝑘, and 𝑑𝑘. This is a direct consequence of the conditional

independence structure exposed by the factor graph representation, and is depicted in

Figure 4-1. Moreover, each association variable 𝑑𝑘 is involved with exactly one factor

𝑓𝑖𝑘. Therefore, the maximum over 𝐷 of the product of all 𝑓𝑖𝑘 is attained simply as

the product of the maxima taken separately over each 𝑑𝑘:

𝑝* = max
𝑋,𝐿

𝜓(𝑋)
∏︁

𝑓𝑖𝑘∈ℱℒ

max
𝑑𝑘

𝑓𝑖𝑘(𝑥𝑖,ℋ𝑘, 𝑑𝑘). (4.9)

Consider the factor defined as:

𝑓𝑚𝑚𝑖𝑘 (𝑥𝑖,ℋ𝑘) , max
𝑑
𝑓𝑖𝑘(𝑥𝑖,ℋ𝑘, 𝑑). (4.10)

We immediately observe that this factor does not depend on any particular assign-

ment to the association variable. Rather, for any assignment to a pose and the
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set of landmarks in the hypothesis set, it determines the optimal association for a

particular measurement. The quantity in equation 4.10 is commonly known as a

“max-marginal” in the setting of probabilistic graphical models [75]. In the setting

of pose-graph SLAM where the measurement models of interest are restricted to be

relative measurements between robot poses, an analogous expression has appeared

before as a max-mixture [105], where it was observed that when the component mea-

surement models appearing in the inner maximization are Gaussian, the result can

serve as an approximation of a sum-mixture of Gaussians. However, we now demon-

strate the following remarkable fact: if we eliminate association variables according to

(4.10), the resulting optimization problem over the remaining variables is equivalent

to the original MAP inference problem. Substitution of (4.10) into (4.9) reveals:

𝑝* = max
𝑋,𝐿

𝜓(𝑋)
∏︁

𝜑𝑚𝑚
𝑖𝑘 ∈ℱℒ

𝜑𝑚𝑚𝑖𝑘 (𝑥𝑖,ℋ𝑘). (4.11)

Moreover, given solutions (𝑋*, 𝐿*) to this problem, we can recover the corresponding

association variables 𝑑*𝑘 as follows:

𝑑*𝑘 = argmax
𝑑

𝑓𝑖𝑘(𝑥
*
𝑖 ,ℋ*

𝑘, 𝑑). (4.12)

To see this, form the problem:

𝑝* = max
𝐷

𝜓(𝑋*)
∏︁

𝑓𝑖𝑘∈ℱℒ

𝑓𝑖𝑘(𝑥
*
𝑖 ,ℋ*

𝑘, 𝑑𝑘)

= 𝜓(𝑋*)max
𝐷

∏︁
𝑓𝑖𝑘∈ℱℒ

𝑓𝑖𝑘(𝑥
*
𝑖 ,ℋ*

𝑘, 𝑑𝑘)

= 𝜓(𝑋*)
∏︁

𝑓𝑖𝑘∈ℱℒ

max
𝑑𝑘

𝑓𝑖𝑘(𝑥
*
𝑖 ,ℋ*

𝑘, 𝑑𝑘),

(4.13)

where in the last line we have used again the conditional independence of each 𝑑𝑘

to factor the maximization into a set of subproblems in one-to-one correspondence

with the landmark measurement factors. Finally, we observe that the maximum in

(4.13) is specifically attained when each 𝑑𝑘 takes on the optimal assignment for its
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individual subproblem. By construction, 𝑑*𝑘 as defined in (4.12) is this assignment.

The equivalence of the problems in (4.4) and (4.11) is significant. By virtue of this

equivalence, we have not skirted the issue of the computational hardness of rendering

global solutions to the problem in (4.4). However, this change has the profound benefit

of making the problem amenable to standard (computationally efficient) optimization

techniques based on local search. Furthermore, since the geometric part of each

component factor in (4.10) is assumed to be Gaussian with respect to a nonlinear

measurement model, we can specifically make use of SLAM solvers tailored toward

incremental nonlinear least-squares applications (e.g. iSAM2 [70]). Finally, from an

optimizer 𝑋*, 𝐿*, of (4.11), we can recover the corresponding optimal associations

(and, in the event that 𝑋* and 𝐿* happen to be global optimizers of (4.11), then the

triple (𝑋*, 𝐿*, 𝐷*) will likewise be a globally optimal solution to (4.2)).

4.2.2 From marginal MAP inference to sum-product elimina-

tion

In this section we consider the marginal MAP inference problem in (4.5). The same

reasoning we applied in the previous section can be used to show that the sum-

marginal distribution on the right-hand side of equation (4.5) admits a similarly

convenient decomposition whereby the max operator is replaced by a summation:

𝑝+ = max
𝑋,𝐿

𝜓(𝑋)
∏︁

𝑓𝑖𝑘∈ℱℒ

∑︁
𝑑𝑘

𝑓𝑖𝑘(𝑥𝑖,ℋ𝑘, 𝑑𝑘), (4.14)

where 𝑝+ is the optimal value for the sum marginal optimization problem. However,

the factor representation analogous to the one in (4.10) (corresponding the summa-

tion terms appearing in (4.14)) is non-Gaussian, prohibiting the direct application

of nonlinear least-squares optimization approaches to solve (4.5) (remedying this was

the motivation for the original max-mixtures approach of Olson and Agarwal [105]).

Rosen et al. [120] provide an algebraic reduction that can transform any positive,

bounded factor into a representation suitable for nonlinear least-squares optimiza-
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tion. Pfeifer et al. [108] subsequently applied this technique in the setting of point

set registration. However, we consider an alternative approach based on expectation-

maximization which admits a straightforward implementation and, as we will show,

optimizes the same objective.

Originally applied to semantic SLAM by Bowman et al. [18], the expectation-

maximization approach iteratively optimizes the marginal likelihood (or, in this case,

the marginal posterior) in equation 4.3b in a two-step procedure [42]. In the ex-

pectation step, a distribution over the hidden (data association) variables given the

remaining variables is computed, allowing the formation of a lower-bound on the

marginal likelihood (or posterior). In the subsequent maximization step, the lower

bound function is maximized with respect to the remaining variables (poses and

landmarks). Given an iterate �̂�, �̂�, the factor representation for this approach can

be expressed as:

𝑓 𝑒𝑚(𝑥𝑖,ℋ𝑘) ,
∏︁
𝑑∈ℋ𝑘

𝑓(𝑥𝑖,ℋ𝑘, 𝑑)
𝑤𝑑 , (4.15)

where

𝑤𝑑 ,
𝑓(�̂�, ℋ̂, 𝑑)∑︀

𝑑′∈ℋ 𝑓(�̂�, ℋ̂, 𝑑′)
. (4.16)

In our setting, the apparent benefit of this representation, as opposed to the exact

formulation, is that the negative logarithm of this factor now takes the form of a

weighted combination of the (negative logarithm of the) original factors. This makes

implementation straightforward when one already has access to the component mea-

surement models.

4.2.3 Computing candidate association hypotheses

Thus far, we have assumed knowledge of a collectively exhaustive set of data associa-

tion hypotheses for each measurement. In practice, however, a reasonable hypothesis

set must be determined as a robot collects new measurements. In this section, we

suggest a method for determining candidate hypotheses based on the commonly em-

ployed Laplace approximation for the robot’s belief state at a particular time (e.g.
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as in [69, 129]). At a high-level, our approach is to first compute a linear Gaussian

approximation to the true (non-Gaussian) posterior belief at a linearization point

corresponding to our current state estimate.1 We will use this approximation to esti-

mate the marginal probability of a landmark measurement 𝑧 under each possible data

association hypothesis (i.e. one hypothesis per mapped landmark), given all previous

measurements, denoted 𝑍∖{𝑧}. A threshold on the marginal measurement probability

determines whether a measurement corresponds to a previously mapped landmark,

or a new landmark. If the measurement is determined to be a new landmark, it is

added to the map, otherwise all landmarks passing the gate threshold are considered

as potential hypotheses and incorporated into the factor graph as a mixture factor.

Consider a single object detection measurement 𝑧 = (𝑧𝑐, 𝑧𝜌) consisting jointly

of geometric and semantic information obtained from a pose 𝑥. We will make the

posterior marginal approximation 𝑝(𝑥, ℓ | 𝑍∖{𝑧}) ≈ 𝑝(𝑥, ℓ𝜌 | 𝑍∖{𝑧})𝑝(ℓ
𝑐 | 𝑍∖{𝑧}).2 From

this, and the factored measurement model, the likelihood of the form 𝑝(𝑧 | 𝑑, 𝑍∖{𝑧})

can be broken into the product of separate semantic and geometric likelihoods:

𝑝(𝑧𝑐, 𝑧𝜌 | 𝑑 = 𝑗, 𝑍∖{𝑧}) ≈ 𝑝 (𝑧𝑐 | · ) 𝑝 (𝑧𝜌 | · ) . (4.17)

Each term on the right-hand side can be expanded as follows into the summation

over landmark classes:

𝑝(𝑧𝑐 | 𝑑 = 𝑗, 𝑍∖{𝑧}) =
∑︁
ℓ𝑐𝑗

𝑝(𝑧𝑐 | ℓ𝑐𝑗)𝑝(ℓ𝑐𝑗 | 𝑍∖{𝑧}), (4.18)

and integral over robot pose and landmark location:

𝑝(𝑧𝜌 | 𝑑 = 𝑗, 𝑍∖{𝑧}) =

∫︁
𝑥,ℓ𝜌𝑗

𝑝
(︀
𝑧𝜌 | 𝑥, ℓ𝜌𝑗

)︀
𝑝(𝑥, ℓ𝜌𝑗 | 𝑍∖{𝑧}). (4.19)

1As one might expect, a unimodal Gaussian distribution may quite poorly capture the true
non-Gaussian belief. While this is computationally convenient, it is a challenge of applying these
methods. Methods for global loop closure, e.g. incorporating finer-grained descriptors of objects,
can improve the robustness of this process, but do not address the key difficulty in representing the
non-Gaussian belief.

2The motivation for this approximation is that recovering the exact hybrid marginal will generally
be intractable.
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The marginal distribution 𝑝(𝑥, ℓ𝜌𝑗 | 𝑍∖{𝑧}) is generally non-Gaussian, and in turn this

integral is typically intractable. Consequently, we approximate the marginal distri-

bution via the Laplace approximation centered at the current estimate. Specifically,

letting x̂ denote the state vector obtained by concatenating an estimate of the robot

pose 𝑥 and landmark position ℓ𝜌𝑗 , we obtain an approximating distribution which is

Gaussian with mean x̂ and covariance Σ:3

𝑝(𝑥, ℓ𝜌𝑗 | 𝑍∖{𝑧}) ≈ 𝒩 (x̂,Σ). (4.20)

With this approximation, all of the terms in the integral are Gaussian and we obtain

(as in [69]):

𝑝(𝑧𝜌 | 𝑑 = 𝑗, 𝑍∖{𝑧}) ≈
1√︀
|2𝜋𝑅𝑗|

𝑒
− 1

2
‖𝑔(x̂)−𝑧𝜌‖2𝑅𝑗 . (4.21)

The covariance 𝑅𝑗 is defined as:

𝑅𝑗 ,
𝜕𝑔

𝜕x

⃒⃒⃒⃒
x̂

Σ
𝜕𝑔

𝜕x

⃒⃒⃒⃒T
x̂

+ Γ, (4.22)

where Σ is the block joint covariance matrix between pose 𝑥𝑡 and candidate landmark

position ℓ𝜌𝑗 , 𝜕𝑔/𝜕x is the Jacobian of the measurement function, and Γ is the covari-

ance of the geometric measurement model. This result, combined with the expression

in (4.18) gives the marginal likelihood in (4.17) that we normalize to compute data

association probabilities. Those landmarks for which this approximate marginal com-

putation is greater than a pre-determined threshold will be considered hypotheses.

In particular, with the observation that the squared-error term ‖𝑔(x̂) − 𝑧𝜌‖2𝑅𝑗
is a

chi-squared distributed random variable, we base the acceptance criterion around a

chi-squared test 𝜒2
𝛼 having a number of degrees of freedom equal to the measurement

3Approximate marginals of this form have the additional benefit that they are readily accessed
using existing computational tools for SLAM like iSAM and iSAM2 [70] in libraries like GTSAM
[38]. To recover the marginals for both the discrete and continuous states, we employ the approach
described in Section 3.2.3 as implemented in DC-SAM.
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dimension and with confidence level 𝛼, giving:

− 2 log 𝑝(𝑧𝑐 | 𝑑 = 𝑗, 𝑍∖{𝑧}) + ‖𝑔(x̂)− 𝑧𝜌‖2𝑅𝑗
< 𝜒2

𝛼, (4.23)

where the factor of 2 appropriately scales the log probability of the semantic mea-

surement component to match the geometric component.4 The expression in equation

(4.23) can be intuitively thought of as an adaptive chi-squared test on only the ge-

ometric measurement component. It is clear that if the semantic measurement and

landmark class agree perfectly we have 𝑝(𝑧𝑐 | · ) = 1, and therefore (4.23) reverts

to a standard chi-squared test with statistic 𝜒2
𝛼 on the geometric measurement. In

the usual event where the semantic measurement and landmark class disagree some-

what, we have: 𝑝(𝑧𝑐 | · ) < 1 which makes the test in (4.23) equivalent to a more

stringent chi-squared test on the geometric measurement. This satisfies expectations:

if the class measurement and the landmark class disagree, we require a commensu-

rate increase in the probability of the geometric measurement in order to accept an

association.

Finally, in practice, we may also want to consider a “null-hypothesis” where the

measurement is assumed to be a false-positive detection and has no correspondence

with a known landmark. We can account for this possibility by placing a prior

weight on a null-hypothesis component factor, which is implemented as a Gaussian

component with large variance for the geometric part and a uniform distribution over

landmark classes for the semantic part.

4.3 Experimental results

We compared variable elimination approaches for data association in two ways: First,

in results presented in Section 4.3.1, we consider artificial semantic SLAM tasks using

data obtained during indoor navigation with an MIT RACECAR vehicle5 equipped

4More precisely, while a factor of 1
2 appears in the logarithm of the probability of a geometric

measurement in (4.21), the test statistic for geometric measurements appearing in (4.23) is twice
this value, so we scale the log probability of the semantic measurement accordingly.

5https://mit-racecar.github.io/
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only with a ZED stereo camera [1]. We simulated semantic SLAM tasks using April-

Tag fiducials [87, 143], which allow us to generate synthetic object class measurements

(for any number of classes up to the total number of AprilTags in the environment)

based on the known unique ID number of each tag. Knowledge of the AprilTag ID

also allows us to construct baseline solutions with known data association. We added

odometry noise and random misclassifications at varying rates in order to assess the

robustness of each approach, the results of which are summarized in Section 4.3.1.

Second, in Section 4.3.2 we evaluated each approach on real stereo image data from

the KITTI dataset [56, 57] using detections of cars for loop closures.

We implemented our approach in C++ using the discrete-continuous smoothing

and mapping (DC-SAM) library [47], which makes use of iSAM2 [70] and the GTSAM

[38] library for optimization and covariance recovery. Experiments were run on a single

core of a 2.2 GHz Intel i7 CPU. We use evo [61] for trajectory evaluation.

In all of the experiments, we compare three approaches to data association: naïve

maximum-likelihood association, denoted (ML), max-product elimination (or, max-

mixtures), denoted (MM), and expectation-maximization, denoted (EM).6 For all of

the approaches other than maximum-likelihood, we also examine the addition of a

null hypothesis decision (denoted +NH where applicable).

4.3.1 MIT RACECAR dataset

We collected roughly 25 minutes of data during indoor navigation with the MIT

RACECAR mobile robot platform (depicted in Figure 4-2) over a roughly 1.08 km

trajectory. We sampled AprilTag [87, 143] detection keyframes at a rate of 1 Hz

resulting in 702 observations of 262 unique tags. The dataset itself consists of several

repeated traversals of a single large loops with occasional 180 degree turns. The

nature of this dataset makes the problem of data association a significant challenge,

particularly for closing large loops and dealing with hairpin turns.

Odometry was obtained using the ZED stereo camera visual odometry [1]. The

6The expectation-maximization approach is equivalent to the approach of Bowman et al. [18]
applied in our problem setting.
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Figure 4-2: MIT RACECAR platform. The MIT RACECAR mobile robot plat-
form used in the experiments. Figure adapted from [10].

use of AprilTags allows us to obtain a baseline solution with known data associations.

We assigned semantic labels to each AprilTag as the true tag ID modulo 𝐶 for a 𝐶-

class semantic SLAM problem. While AprilTags provide full rotation and translation

estimates for tag poses in the camera frame, we do not expect this in general of

neural network-based object detectors. Consequently, we consider only the range and

bearing to AprilTags in our semantic SLAM system.

We examined the performance of each system across two parameters of inter-

est: noise in odometry measurements and misclassification rate. To simulate added

noise in odometry measurements, we perturb the existing measurements with additive

Gaussian noise. We restrict this addition of noise to measurements of planar motion

and sample from a distribution with standard deviations equal to 10−3 times the

base model standard deviation. We examine the performance of each estimator while

varying the scale applied to these models; that is, for an added noise “scale” of 10, the

standard deviation of the augmented noise is 10−2 times that of the base model. To

simulate misclassification, we randomly perturb classifications with a particular prob-

ability. That is, for a misclassification rate of 0.1, there is a 90% chance of observing

the true landmark class and a 10% chance that it will be misclassified. In the case of
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odometry noise and misclassification rate, we assume access to an accurate model of

the noise characteristics. As a consequence, for a two-class classification problem (as

we consider here), a 50% misclassification rate causes the system to discard semantic

information entirely. Quantitative results for these experiments are summarized in

Figure 4-3. The corresponding qualitative results are provided in Figure 4-4. The

difficulty of this dataset is reflected by the relatively poor estimation accuracy of all

of the methods, and is a consequence of the fact that accurate state estimation on this

particular dataset requires reliably closing large loops. Since loop closure is deter-

mined by a measurement gate, this places the burden of robustness predominantly on

the gating procedure. Since our approach does not address the issue of maintaining

multiple hypotheses about the existence of a new landmark for a particular measure-

ment (only the identity of a landmark correspondence once existence is established)

we cannot recover from situations where the system creates spurious landmarks (this

is true of all the methods we tested). Moreover, if the correct landmark hypothesis is

not in the set of correspondences for a given measurement, the best we can hope for in

the current system is that the measurement will be rejected as null. Furthermore, the

specific gating procedure we employ here makes use of a unimodal Gaussian approx-

imation of a posterior distribution that we do not expect to be truly unimodal. The

quality of this approximation relies on the posterior distribution being concentrated

around the current estimate of the map and robot trajectory. Of course, if the cur-

rent estimate is wrong (e.g., as is common when information thus far is insufficient

to distinguish between multiple landmark hypotheses) this can produce a mislead-

ing representation of the solution uncertainty. The performance of the expectation

maximization approach, which effectively combines the impact of multiple hypotheses

(including the null hypothesis) on the state uncertainty in a weighted average, seems

to offer the most reliable performance using this gating procedure. Overall, our re-

sults suggest that the determination of new landmarks (i.e. the gating procedure) is

an important challenge for future work on these systems. Better posterior approxi-

mations, such as the non-Gaussian formulation in [45] may help to some degree, but

ultimately if we are to rely on a plausibly inaccurate state estimate for any decisions
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(a)

(b)

Figure 4-3: MIT RACECAR dataset trajectory error. Error distribution for
the MIT RACECAR dataset experiments. (a) Error as a function of added odometry
noise. (b) Error as a function of misclassification rate.

whatsoever, it seems that we must have the ability to “revert” those decisions. Doing

this in a computationally tractable manner is an open question, though heuristics

have been produced in certain problem domains that may present initial steps in this

direction (see, e.g., [84]).

4.3.2 KITTI datasets

We also evaluate our approach on stereo camera data from the KITTI dataset odom-

etry sequences [56]. In our experiments, we use the YOLO object detector [114]. We

threshold the confidence of the detector at 0.8, using detections of cars as landmarks.

We use VISO2 stereo odometry for visual odometry [55]. We estimate the range and

bearing to cars as the median range and bearing to all points that project into the
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bounding box for a given car detection.

In this demonstration, we consider semantic SLAM using stereo camera data from

the KITTI dataset [57]. We sample keyframes every two seconds, using VISO2 [55] to

obtain stereo odometry measurements and YOLO [114] for noisy detections of cars.

We estimate the range and bearing to an object’s position as that of the median

depth point projecting into a detected object’s bounding box. Using DC-SAM, we

are able to compute solutions to this problem online.7 Table 4.1 gives a quantitative

comparison of our approach with the odometric estimate from VISO2. Our approach

substantially improves upon the translational errors of the odometric estimate and

additionally enables the estimation of discrete landmark classes. Figure 4-5 gives a

qualitative example demonstrating landmark class inference, in which we distinguish

between cars and trucks as object-level landmarks.

4.4 Summary

In this chapter we presented an approach for semantic SLAM with unknown data

association based on exact elimination of the association variables. We showed that

for typical graphical models encountered in semantic SLAM, the association variables

can be analytically eliminated. Inference over the eliminated graphs is equivalent to

the original MAP (or marginal MAP) inference problem, but can be performed effi-

ciently using local search techniques; in particular, incremental nonlinear least-squares

solvers [70] as employed within our hybrid solver and library DC-SAM. Since our ap-

proach requires that we provide a suitable hypothesis set, we also gave a method based

on a chi-squared hypothesis test to produce such a set. Our method for hypothesis

set determination requires only the ability to compute approximate marginals over

robot poses and landmark states, which are readily available using off-the-shelf tools

like GTSAM [38]. Finally, we demonstrated our approach on semantic SLAM prob-

lems using real data from a mobile robot with simulated (noisy) object detections

7We run our solver on an Intel i7 2.6 GHz CPU and YOLO on an NVIDIA Quadro RTX 3000
GPU.
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Figure 4-5: Qualitative object-level SLAM results for KITTI dataset 00.
The output of our system (using the max-mixture model) is depicted above for a
semantic SLAM problem on the KITTI dataset using observations of both cars and
trucks. Cars are depicted in blue with trucks depicted in red. The estimated vehicle
trajectory is shown in green.
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obtained using fiducials as well as on the KITTI dataset using real object detections

from YOLO [114].

With the recognition that even in cases where the cost functions to be opti-

mized in the outlier free setting are convex, robust variants of these cost functions

(e.g. the truncated least-squares (TLS) cost function) are nonconvex, methods have

been proposed based on graduated nonconvexity (GNC), which initially solve a con-

vex problem and aim to gradually recover the nonconvex, outlier-robust cost [145].

These approaches may improve the sensitivity of nonconvex robust estimation meth-

ods to initialization. To date, these methods have not been applied in the setting

of landmark-based data association, though likewise it may be possible to consider

similar techniques in the setting
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Chapter 5

Performance guarantees for spectral

initialization in rotation averaging

and pose-graph SLAM

In Chapters 3 and 4 we considered problems of MAP inference in hybrid probabilistic

models. The DC-SAM algorithm we developed in Chapter 3 is based on iterative

improvement of an initial assignment to the states we aimed to estimate. However, we

set aside the application-specific issue of actually obtaining that initial iterate. In this

chapter, we examine the issue of initialization for robot perception problems (defined

on continuous states): rotation averaging (RA), where all states and measurements

are elements of the special orthogonal group; and pose-graph SLAM, where all states

and measurements are elements of the special Euclidean group. The fact that the

states in these problems are constrained to lie in sets which are nonconvex makes

these estimation problems inherently nonconvex, with many bad local minima that

can entrap the local optimization methods commonly applied to solve them. The

performance of standard SLAM and RA algorithms thus crucially depends upon the

quality of the estimates used to initialize the local search. In consequence, a great

deal of prior work has been dedicated to the development of initialization techniques

(see Carlone et al. [30] for a review). While many of these techniques often work

well in practice, the fact that they are obtained as heuristic approximations makes it
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difficult to ascertain what specific features of SLAM or RA problems determine their

performance. As a result, it is difficult to say when, or under what conditions, these

techniques can be reliably deployed.

We propose a simple spectral initialization method for pose-graph SLAM and ro-

tation averaging that we prove enjoys explicit performance guarantees. To the best of

our knowledge, these are the first concrete guarantees to appear in the literature for

any initialization technique adapted to these applications. Our analysis gives direct

control over the estimation error of a spectral initialization in terms of the spectral

properties of the measurement network.1 This allows us to control the distance from

the spectral estimate to the global minimizer of the estimation problem; this is crit-

ical for ensuring that the initialization lies in the locally convex region around the

global minimizer, and therefore that this minimizer can be recovered by a subsequent

local refinement (see Figure 5-1). Our proof of this result relies on new estimation

error bounds for the global minimizers (i.e. the maximum likelihood estimators) of

SLAM and rotation averaging problems, which are likely to be of independent inter-

est. Algorithmically, our approach only requires computing the first few eigenpairs

of a symmetric matrix, which can be achieved using any off-the-shelf implementa-

tion of the Lanczos method (e.g. the MATLAB eigs command). Our empirical

results on both synthetic data and standard pose-graph SLAM benchmarks demon-

strate that the spectral estimator typically performs far better than our worst-case

analysis suggests, achieving solution quality and computation times competitive with

state-of-the-art approaches. Beyond its utility as an initialization method for , our

results show that spectral relaxation provides an inexpensive method for rotation

averaging and pose-graph optimization in its own right (i.e. without the need to per-

form subsequent nonconvex optimization or semidefinite relaxation) that attains an

asymptotic error bound comparable to the (globally optimal) estimator, and provides

near-optimal estimates in practice.

1Recent work has identified spectral properties of measurement networks as key quantities con-
trolling the performance of estimators for these problems, though this connection (particularly in
the context of SLAM) remains under-explored (see [119] for a recent review).
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Figure 5-1: Comparing true, optimal, and initial rotation estimates. We are
interested in bounds on the deviation of an initial estimate 𝑅(0) from the (latent)
ground truth

¯
𝑅 and the globally optimal solution 𝑅*.

5.1 Problem formulation

We consider the problem of synchronization over the SO(𝑑) group: this is the problem

of estimating 𝑛 unknown values 𝑅1, . . . , 𝑅𝑛 ∈ SO(𝑑) given a set of noisy measurements

�̃�𝑖𝑗 of a subset of their pairwise relative rotations
¯
𝑅𝑖𝑗 ,

¯
𝑅−1
𝑖 ¯
𝑅𝑗.2 The problem of

SO(𝑑)-synchronization captures, in particular, the problems of rotation averaging

and, under common modeling assumptions, pose graph optimization (as we show in

Problem 5 and equation (PGO)), where the variables of interest are the orientations

of a robot (or more generally, a rigid body) at different points in time (see, for

example Grisetti et al. [59]). This problem possesses a natural graphical structure

𝒢 , (𝒱 , ℰ⃗), where nodes 𝒱 correspond to latent variables 𝑅𝑖 ∈ SO(𝑑) and edges

(𝑖, 𝑗) ∈ ℰ⃗ correspond to (noisy) measured relative rotations �̃�𝑖𝑗 between 𝑅𝑖 and 𝑅𝑗.

In particular, for the problem of rotation averaging, we adopt the following standard

generative model for rotation measurements: For each edge (𝑖, 𝑗) ∈ ℰ⃗ , we sample a

noisy relative measurement �̃�𝑖𝑗 according to (cf. [41, 118]):

�̃�𝑖𝑗 =
¯
𝑅𝑖𝑗𝑅

𝜖
𝑖𝑗, 𝑅𝜖

𝑖𝑗 ∼ Langevin(𝐼𝑑, 𝜅𝑖𝑗). (5.1)

2As a brief notational remark: in the previous chapters we typically made use of 𝑑 to indicate a
discrete state we would like to estimate. Here, there are no discrete states, and 𝑑 is simply used to
denote the dimension of the problem under consideration (e.g. 𝑑 = 2 for two-dimensional rotation
synchronization, and so on).
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Given a set of noisy pairwise relative rotations �̃�𝑖𝑗 sampled according to the generative

model (5.1), a maximum likelihood estimate 𝑅* ∈ SO(𝑑)𝑛 for the latent rotational

states 𝑅1, . . . , 𝑅𝑛 is obtained as a minimizer of the following problem [41, 118]:

Problem 3 (Maximum likelihood estimation for rotation averaging).

min
𝑅𝑖∈SO(𝑑)

∑︁
(𝑖,𝑗)∈ℰ⃗

𝜅𝑖𝑗‖𝑅𝑗 −𝑅𝑖�̃�𝑖𝑗‖2𝐹 . (5.2)

For pose-graph SLAM (SE(𝑑)-synchronization), we adopt the following generative

model for rotation and translation measurements: For each edge (𝑖, 𝑗) ∈ ℰ⃗ , we sample

a noisy relative measurement �̃�𝑖𝑗 = (𝑡𝑖𝑗, �̃�𝑖𝑗) ∈ SE(𝑑) according to:

�̃�𝑖𝑗 =
¯
𝑅𝑖𝑗𝑅

𝜖
𝑖𝑗, 𝑅𝜖

𝑖𝑗 ∼ Langevin(𝐼𝑑, 𝜅𝑖𝑗) (5.3a)

𝑡𝑖𝑗 =
¯
𝑡𝑖𝑗 + 𝑡𝜖𝑖𝑗, 𝑡𝜖𝑖𝑗 ∼ 𝒩 (0, 𝜏−1

𝑖𝑗 𝐼𝑑), (5.3b)

where
¯
𝑥𝑖𝑗 =

¯
𝑥−1
𝑖 ¯
𝑥𝑗 = (

¯
𝑡𝑖𝑗,

¯
𝑅𝑖𝑗) is the true relative transformation from 𝑥𝑖 to 𝑥𝑗. Under

this noise model, a maximum likelihood estimate 𝑥* ∈ SE(𝑑)𝑛 for the latent states

𝑥1, . . . , 𝑥𝑛 is obtained as a minimizer of the following problem [118]:

Problem 4 (Maximum-likelihood estimation for SE(𝑑) synchronization).

min
𝑡𝑖∈R𝑑

𝑅𝑖∈SO(𝑑)

∑︁
(𝑖,𝑗)∈ℰ⃗

𝜅𝑖𝑗‖𝑅𝑗 −𝑅𝑖�̃�𝑖𝑗‖2𝐹 + 𝜏𝑖𝑗‖𝑡𝑗 − 𝑡𝑖 −𝑅𝑖𝑡𝑖𝑗‖22. (5.4)

Note that under these modeling assumptions, both pose-graph optimization and

rotation averaging can be written as particular instances of the following general

optimization problem:

Problem 5 (Quadratic minimization over SO(𝑑)𝑛).

𝑝* = min
𝑅∈SO(𝑑)𝑛

tr(�̃�𝑅T𝑅), (5.5)

where �̃� ∈ Sym(𝑑𝑛), �̃� ⪰ 0.
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Algorithm 1 Spectral initialization procedure

Input: The data matrix �̃� from (RA) or (PGO)
Output: A spectral initialization 𝑅(0)

1: function SpectralInitialization(�̃�)
2: Compute orthogonal set of eigenvectors Φ corresponding to the 𝑑 smallest

eigenvalues
of �̃�. ◁ Solve Problem 6.

3: for 𝑖 = 1, . . . , 𝑛 do
4: Set 𝑅(0)

𝑖 ← Π𝒮(Φ𝑖), where Φ𝑖 is the 𝑖-th (𝑑× 𝑑) block of Φ. ◁ Definition 2
5: end for
6: return 𝑅(0)

7: end function

Specifically, the problems of rotation averaging (RA) and pose-graph optimization

(PGO) in Problems 3 and 4, respectively, can be parameterized in terms of the fol-

lowing data matrices:

�̃� = 𝐿(�̃�𝜌), (RA)

�̃� = 𝐿(�̃�𝜌) + �̃�𝜏 , (PGO)

where 𝐿(�̃�𝜌) is the rotation connection Laplacian and �̃�𝜏 is a data matrix comprised

of translation measurements. For the purposes of the approach presented in this

chapter, the specific structure of �̃� is not important; we require only that in the

noiseless case, where �̃� =
¯
𝑄, we have

¯
𝑅T ∈ ker(

¯
𝑄), where

¯
𝑅 is the set of (latent)

ground-truth rotational states, and 𝐿(
¯
𝐺𝜌) ⪰ 0 and

¯
𝑄𝜏 ⪰ 0 (see [118, Appendix

C.3] for a detailed analysis of the noiseless case). The interested reader may refer to

Appendix A.1 for a complete description of these data matrices.

5.2 Spectral methods for initialization

The nonconvexity of the SO(𝑑) constraint renders Problem 5 computationally hard to

solve in general. However, we can generate a tractable spectral relaxation of Problem

5 by relaxing the SO(𝑑) constraint as follows:
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Problem 6 (Spectral Relaxation of Problem 5).

𝑝*S = min
𝑌 ∈R𝑑×𝑑𝑛

tr(�̃�𝑌 T𝑌 )

s.t. 𝑌 𝑌 T = 𝑛𝐼𝑑.

(5.7)

Here, the SO(𝑑) constraint on each (𝑑× 𝑑) block of the variable 𝑌 has been replaced

by the (weaker) constraint that 𝑌 𝑌 T = 𝑛𝐼𝑑, i.e. the matrix 𝑌 is comprised of 𝑑

orthogonal rows of norm
√
𝑛. While the relaxed constraints in (5.7) are still quadratic

and nonconvex, in Appendix A.2.1 we prove that a feasible point 𝑌 is a (global)

minimizer of Problem 6 if and only if its rows are comprised of 𝑑 pairwise orthogonal

(and appropriately scaled) eigenvectors corresponding to the minimum 𝑑 eigenvalues

of �̃�. Therefore, one can recover an optimizer 𝑌 * of Problem 6 via a simple eigenvector

computation.3

For the noiseless problem parameterized by
¯
𝑄, the relaxation in Problem 6 is

exact in the sense that
¯
𝑅 = 𝐺𝑌 * for some 𝐺 ∈ O(𝑑).4 This follows from the fact

that, by construction, the ground truth rotations
¯
𝑅T lie in ker(

¯
𝑄),5 and

¯
𝑅
¯
𝑅T = 𝑛𝐼𝑑

since
¯
𝑅 ∈ SO(𝑑)𝑛. Likewise, since

¯
𝑅 is a minimizer of the relaxed problem and is in

the feasible set for the Problem 5, it is also a minimizer for Problem 5. In general,

however, we do not expect such a nice correspondence to hold. Indeed, a minimizer of

Problem 6 need not even be feasible for Problem 5, since the former is obtained from

the latter by relaxing constraints. Therefore, we must in general round the estimate

provided by the spectral relaxation to obtain an approximate solution 𝑅(0) ∈ SO(𝑑)𝑛

in the feasible set of Problem 5. The following definition makes this precise.

Definition 2 (Projection onto SO(𝑑)). For 𝑋 ∈ R𝑑×𝑑, the projection Π𝒮(𝑋) of 𝑋

onto SO(𝑑) is by definition a minimizer of the following:

min
𝐺∈SO(𝑑)

‖𝑋 −𝐺‖𝐹 . (5.8)

3This justifies our referring to Problem 6 as a “spectral” relaxation of Problem 5.
4The spectral relaxation in Problem 6, like Problem 5, admits infinitely many solutions: if 𝑌 * is

a minimizer of Problem 6, then any 𝐺𝑌 *, 𝐺 ∈ O(𝑑) is also a minimizer.
5We refer the reader to [118, Appendix C.3] for detailed analysis of the noiseless case.
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A minimizer for this problem is given in closed-form as [62, 139]:

Π𝒮(𝑋) = 𝑈Ξ𝑉 T. (5.9)

where 𝑋 = 𝑈Σ𝑉 T is a singular value decomposition, and Ξ is the matrix:

Ξ = Diag
(︀
1, 1, det(𝑈𝑉 T)

)︀
. (5.10)

In the context of subsequent derivations, it will be convenient to “overload” this

rounding operation to 𝑌 ∈ R𝑑×𝑑𝑛 as follows:

Π𝒮(𝑌 ) = (Π𝒮(𝑌1), . . . ,Π𝒮(𝑌𝑛)) , (5.11)

where 𝑌𝑖 ∈ R𝑑×𝑑 are the 𝑛 blocks of 𝑌 .

Therefore, we can obtain an approximate solution to Problem 5 from a minimizer

𝑌 * of the relaxation in Problem 6 as 𝑅(0) , Π𝒮(𝑌
*). Our overall spectral initialization

procedure is summarized in Algorithm 1.

5.3 Main results

This section presents our main results, which are three-fold: First, we provide a

bound on the error of our spectral initialization 𝑅(0) with respect to the ground-truth

rotations
¯
𝑅. Second, we give a new bound on the error of globally optimal solutions 𝑅*

with respect to
¯
𝑅: this bound differs from prior work (e.g. Preskitt [110], Rosen et al.

[118]) in that it is defined with respect to the orbit distance 𝑑𝒮 on SO(𝑑)𝑛. Previous

work used the orbit distance 𝑑𝒪 on O(𝑑)𝑛 due to mathematical convenience; however,

the estimation error one considers in application is actually over SO(𝑑)𝑛, since this

is the domain on which the estimation problem is defined. Combining these results,

we obtain an upper bound on the SO(𝑑) orbit distance between an initial guess 𝑅(0)

and a globally optimal solution 𝑅*. Our analysis gives direct control over the mutual

deviation between the three quantities of interest: 𝑅(0), 𝑅*, and
¯
𝑅 as a function of
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the noise magnitude. We conclude with additional remarks about computing these

bounds for practical SLAM scenarios and a few straightforward adaptations of the

main results.

Recall from Problem 6 that an estimate Φ is a minimizer of Problem 6 if and only

if it is composed of a (suitably scaled) orthogonal set of eigenvectors corresponding to

the minimum 𝑑 eigenvalues of �̃�, and that in the noiseless case a minimizer is given

by
¯
𝑅. Since a spectral initialization 𝑅(0) is obtained as the projection of a solution

Φ of Problem 6 onto SO(𝑑)𝑛, we can bound its estimation error by first bounding

the deviation of Φ from
¯
𝑅, then bounding the additional error incurred by projecting

onto SO(𝑑)𝑛.

We will begin our presentation of the main results by giving a bound on the

deviation of a solution Φ of Problem 6 from the ground truth
¯
𝑅 via the Davis-Kahan

Theorem [147], a classical result relating the perturbation of a matrix’s eigenvectors

under a symmetric perturbation to the magnitude of that perturbation. Here, we

take
¯
𝑄 to be the matrix under consideration, and define the perturbation Δ𝑄 ,

�̃� −
¯
𝑄. The following lemma, which we prove in Appendix A.2.2, gives the desired

characterization:

Lemma 3. Let Φ be a minimizer of Problem 6 and
¯
𝑅 be the corresponding ground

truth rotations. Then:

𝑑𝒪 (
¯
𝑅,Φ) ≤ 2

√
2𝑑𝑛‖Δ𝑄‖2
𝜆𝑑+1(

¯
𝑄)

. (5.12)

Lemma 3 provides control over the deviation of an “unrounded” solution Φ from the

ground truth
¯
𝑅. The second technical ingredient we require is the following simple

bound controlling the maximum distance between a matrix 𝑋 and its projection

Π𝒮(𝑋) onto SO(𝑑):

Lemma 4. Let 𝑋 ∈ R𝑑×𝑑 and 𝑅 ∈ SO(𝑑). Then:

‖Π𝒮(𝑋)−𝑅‖𝐹 ≤ 2‖𝑋 −𝑅‖𝐹 . (5.13)
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Proof.

‖Π𝒮(𝑋)−𝑅‖𝐹 = ‖Π𝒮(𝑋)−𝑋 +𝑋 −𝑅‖𝐹 (5.14)

≤ ‖Π𝒮(𝑋)−𝑋‖𝐹 + ‖𝑋 −𝑅‖𝐹 (5.15)

≤ 2‖𝑋 −𝑅‖𝐹 , (5.16)

where the last inequality follows from the fact that Π𝒮(𝑋) is a minimizer over SO(𝑑)

of the distance to 𝑋 with respect to the Frobenius norm, and that, by hypothesis,

𝑅 ∈ SO(𝑑).

Lemma 4 provides a straightforward approach for converting a bound expressed

in the O(𝑑)𝑛 orbit distance to one expressed in the SO(𝑑)𝑛 orbit distance. In turn,

we obtain the following theorem, which we prove in Appendix A.3.1:

Theorem 5. Let Φ be a minimizer of Problem 6 and 𝑅(0) = Π𝒮(Φ) ∈ SO(𝑑)𝑛 be

the corresponding spectral initialization. Finally, let
¯
𝑅 ∈ SO(𝑑)𝑛 be the set of ground

truth rotations in Problem 5. Then the estimation error of 𝑅(0) satisfies:

𝑑𝒮(
¯
𝑅,𝑅(0)) ≤ 4

√
2𝑑𝑛‖Δ𝑄‖2
𝜆𝑑+1(

¯
𝑄)

. (5.17)

The bound (5.17) gives a direct (linear) relationship between the magnitude of the

perturbation Δ𝑄 and the worst-case error of a spectral estimate. Moreover, Theorem

5 implies that 𝑑𝒮(
¯
𝑅,𝑅(0)) → 0 as Δ𝑄 → 0. That is to say, as the measurements

approach their noiseless counterparts, our spectral estimate approaches the ground

truth.

Next, we address the issue of furnishing a bound on 𝑑𝒮(
¯
𝑅,𝑅*). The following

theorem, which we prove in Appendix A.3.2, gives the desired result:

Theorem 6 (Bounding the estimation error for 𝑅*). Let 𝑅* be a minimizer of Prob-

lem 5 and
¯
𝑅 be the set of ground-truth rotations. Then the estimation error of 𝑅*

satisfies:

𝑑𝒮(
¯
𝑅,𝑅*) ≤ 8

√
𝑑𝑛‖Δ𝑄‖2
𝜆𝑑+1(

¯
𝑄)

. (5.18)
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To the best of our knowledge, Theorem 6 is the first result to appear in the liter-

ature that directly controls the estimation error of the maximum likelihood estimate

𝑅* over SO(𝑑)𝑛 specifically. Prior work considered the estimation error over O(𝑑)𝑛

[6, 80, 118]. In our application, however, we are specifically concerned with the esti-

mation error over SO(𝑑)𝑛; as one can see from inspection, this is the domain on which

Problem 5 is defined. Thus, the SO(𝑑)𝑛 orbit distance corresponds to the actual error

one would obtain in practice.

While Theorem 5 establishes error bounds for the spectral estimator, when viewed

as an initialization method, the distance between the initial guess 𝑅(0) and the globally

optimal solution is the primary concern. A corollary to Theorems 5 and 6, allows us

to control 𝑑𝒮(𝑅(0), 𝑅*) in terms of the noise matrix Δ𝑄. We have:

Corollary 7. The orbit distance between the initialization 𝑅(0) and a globally optimal

solution 𝑅* satisfies:

𝑑𝒮(𝑅
(0), 𝑅*) ≤ (8 + 4

√
2)
√
𝑑𝑛‖Δ𝑄‖2

𝜆𝑑+1(
¯
𝑄)

. (5.19)

These bounds provide a clear relationship between the spectral properties of
¯
𝑄

and Δ𝑄 and the deviation between a spectral estimator 𝑅(0), maximum likelihood

estimator 𝑅*, and the ground-truth
¯
𝑅. An important consequence of these bounds is

that as Δ𝑄→ 0, we have (at least) linear convergence of the estimation error for both

the spectral estimator and the maximum likelihood estimator to zero. This, in turn,

guarantees that Δ𝑄 → 0 implies 𝑅*, 𝑅(0) →
¯
𝑅 (up to symmetry), which is what we

would expect.

In practice, however, we do not have access to
¯
𝑄. This presents some difficulty

in the computation of Δ𝑄 and 𝜆𝑑+1(
¯
𝑄). Fortunately, the noiseless rotation matrices

admit a description in terms of quantities that are typically assumed to be known.

In particular, we have [118, Lemma 8]:

𝜆𝑑+1(𝐿(
¯
𝐺𝜌)) = 𝜆2(𝐿(𝑊

𝜌)), (5.20)
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where 𝐿(𝑊 𝜌) is the Laplacian of the rotational weight graph. Now, 𝐿(𝑊 𝜌) depends

only on the concentration parameters 𝜅𝑖𝑗 attached to each edge, which are generally

assumed to be known a priori from the noise models (5.1) and (5.3). In the rotation

averaging case, we have
¯
𝑄 = 𝐿(

¯
𝐺𝜌), and therefore the denominator 𝜆𝑑+1(

¯
𝑄) is readily

available as 𝜆2(𝐿(𝑊 𝜌)), the algebraic connectivity of the rotational weight Laplacian.

In the case of pose-graph SLAM, where the matrix
¯
𝑄 contains the translational

terms
¯
𝑄𝜏 , we can use the fact that

¯
𝑄 = 𝐿(

¯
𝐺𝜌)+

¯
𝑄𝜏 is the sum of positive-semidefinite

matrices (see Rosen et al. [118, Appendix C.3]), so 𝜆𝑑+1(𝐿(
¯
𝐺𝜌)) ≤ 𝜆𝑑+1(𝐿(

¯
𝐺𝜌)+

¯
𝑄𝜏 ) =

𝜆𝑑+1(
¯
𝑄). In particular, the (weaker) bounds obtained by substituting 𝜆𝑑+1(

¯
𝑄) with

𝜆𝑑+1(𝐿(
¯
𝐺𝜌)) in (5.17) and (5.18) hold.

Moreover, a common SLAM initialization technique is that of rotation only ini-

tialization – i.e., to compute the initializer 𝑅(0) using only the relative rotation mea-

surements [30]. This can have computational advantages in practice since 𝐿(�̃�𝜌) is

generally sparse; the same cannot be said for the pose-graph SLAM data matrix �̃�, as

it arises via analytic elimination of the translational states, in which case the resulting

data matrix �̃� is formed as a (dense) generalized Schur complement [118, Appendix

B]. Interestingly, for pose-graph SLAM, a spectral initialization 𝑅(0) computed using

the eigenvectors of 𝐿(�̃�𝜌) (i.e. ignoring �̃�𝜏 ) attains the bound:

𝑑𝒮(
¯
𝑅,𝑅(0)) ≤ 4

√
2𝑑𝑛‖Δ𝐿(�̃�𝜌)‖2
𝜆𝑑+1(𝐿(

¯
𝐺𝜌))

. (5.21)

This bound holds by the same reasoning as Theorem 5, but with the consideration

that
¯
𝑅T ∈ ker(𝐿(

¯
𝐺𝜌)).

As a final consideration, typically we do not have access to Δ𝑄 (if we did, we

could recover the true data matrix
¯
𝑄 as �̃�−Δ𝑄). In consequence, we need a method

to estimate the likely magnitude of the noise in a given application. One way of

achieving this is via simulation from the generative model, given a measurement

network and associated measurement precisions.6 This, in turn, gives a sample set

6Simulating measurements in the case of pose-graph SLAM requires knowledge of the ground-
truth translation measurement scale, which is typically also unavailable in practice. However, the
rotation-only initialization bound (5.21) applies in general and depends only upon the rotation
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Figure 5-2: Spectral relaxation produces high-quality initializations. Qual-
itative comparison with the globally optimal solution suggests that the spectral re-
laxation produces estimates that are very close to optimal for a variety of SLAM
benchmark datasets. The corresponding quantitative comparison is given in Table
5.1.

from a distribution over the bounds (5.17), (5.18), and (5.19).

5.4 Experimental results

In this section, we compare the bounds in Theorem 5 to the actual estimation error in-

curred by the spectral initialization and globally optimal pose-graph SLAM solutions

on a variety of simulated problem instances, as well as benchmark SLAM problems.

In Section 5.4.1 we construct synthetic pose-graph SLAM scenarios for which the

ground-truth poses are known. Since the bounds we have presented depend upon

measurements, which can be simulated to produce an empirical distribution over the spectral norm
of the perturbation matrix.
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knowledge of the noise magnitude ‖Δ𝑄‖2 and the spectral gap of the true data ma-

trix
¯
𝑄, which are unknown in practice for pose-graph SLAM, our first set of empirical

results shed light on the behavior of these worst-case bounds (as well as the actual

error realized by different estimators) as we vary the noise parameters controlling

the generative model (5.3). In Section 5.4.2, we evaluate the performance of spec-

tral relaxation as a practical initialization method in the context of 3D pose-graph

SLAM applications. We show that, consistent with our results on synthetic data,

the spectral initialization method offers high-quality initial solutions for pose-graph

optimization, and in particular, that the inclusion of translational measurements sig-

nificantly improves the quality of the spectral estimator versus the common approach

of using exclusively rotational measurements.

The spectral initialization method was implemented in C++ using Spectra to

efficiently solve large-scale eigenvalue problems [112]. Computation of the bounds in

Section 5.4.1 was performed in MATLAB using eigs. All experiments were performed

on a laptop with a 2.2 GHz Intel i7 CPU. Where (verified) globally optimal solutions

were needed, we used the C++ implementation of SE-Sync [118]. We also provide

results using the well-known chordal initialization method [90], which relaxes the

feasible set of Problem 5 to R𝑑×𝑑𝑛, with the constraint that 𝑅(0)
1 = 𝐼𝑑, for which the

solution can be obtained by solving a linear system.

5.4.1 Evaluation on synthetic data

The bounds presented in our analysis depend upon knowledge of the noise magnitude

‖Δ𝑄‖2, which is unknown in practice. In light of this fact, we examine empirically

the behavior of the bounds as a function of the noise parameters using synthetic

data. Specifically, we use the Cube dataset [29, 118], which consists of a set of

vertices (poses) organized in a three-dimensional cube, with 𝑠 vertices per dimension.

Consecutive poses have an “odometry” edge between them, and loop closures are

sampled randomly from the remaining edges with probability 𝑝𝐿𝐶 . Measurements

are generated by randomly sampling from the generative model (5.3) with fixed noise

parameters 𝜅 and 𝜏 for all measurements. Beyond providing access to the ground-
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Figure 5-3: Cube experiments. Example ground-truth realization of a synthetic
Cube dataset [29, 118] with 𝑠 = 10 vertices per side and 𝑝𝐿𝐶 = 0.1. The robot’s
trajectory is shown in blue with loop closures shown in red.

truth rotations, this setup allows us to compare the worst-case bounds with empirical

performance in noise regimes well outside the range typically encountered in real

SLAM scenarios. A sample configuration for the Cube dataset is provided in Figure

5-3.

Influence of noise parameters on performance bounds: In Figure 5-4, we

study the performance of the spectral initialization approach across a variety of noise

configurations. In each case, we provide the worst-case bounds (5.17) and (5.21) along

with the empirical error of the different estimators under consideration. In Figure

5-4a, we sample Cube problem instances with logarithmically spaced values of 𝜅 while

fixing the other parameters: 𝜏 = 150 (corresponding to an expected RMS error of

0.14 m), 𝑝𝐿𝐶 = 0.2, and 𝑠 = 10. In Fig. 5-4b, we fix 𝜅 = 105 (corresponding to

an expected RMS error of approximately 0.1∘), 𝑝𝐿𝐶 = 0.25 and 𝑠 = 10 and sample

problem instances with logarithmically spaced translation concentration parameter

𝜏 . In Fig. 5-4c, we fix 𝜅 = 105, 𝜏 = 150, 𝑠 = 10 and vary 𝑝𝐿𝐶 from 0 to 1.
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Figure 5-4: Influence of dataset parameters on the performance bounds for
the Cube experiments. We examine empirically the change in the theoretical
bounds (5.17) and (5.21) as well as the estimation error of several pose-graph opti-
mization estimates while varying (a) the rotation concentration parameter 𝜅, (b) the
translation concentration parameter 𝜏 , (c) the probability of a loop closure 𝑝𝐿𝐶 , (d)
the number of vertices 𝑠3.
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Across a wide range of concentration parameters, the spectral initializations at-

tain very similar error to the global optimizer.7 In particular, their error often im-

proves upon the worst-case bounds (5.17) and (5.21) by orders of magnitude. This

is consistent with earlier observations of qualitatively similar bounds for phase syn-

chronization [110]. Moreover, in applications of rotation averaging and pose-graph

optimization, previous work has shown that the maximum likelihood estimator often

attains expected error close to the Cramér-Rao lower bound (see [17] for rotation

averaging and [33] for pose-graph optimization). The behavior of the bounds when

varying the translation concentration parameter in Figure 5-4b is counterintuitive:

while the spectral estimator improves with increasing 𝜏 , the bound suggests the op-

posite worst-case behavior. It seems the form of the bounds we derive (including the

translational terms) is not refined enough to capture this behavior, and this certainly

warrants further investigation. With this exception, the bounds seem to accurately

capture the behavior of the actual estimation error, though they appear to be quite

loose with respect to the empirical performance attained by all of the methods. This

suggests that, while the bounds we have produced identify key quantities of inter-

est for accurate state estimation and have “reasonable” asymptotic performance (i.e.

linear convergence as ‖Δ𝑄‖2 → 0), there is significant room for improvement in the

bounds themselves.

Dependence on problem dimensionality: Due to the explicit appearance of

the problem dimension 𝑛 in the bounds (5.17), (5.18), and (5.19), it is interesting to

consider how the number of rotations to be estimated affects these bounds. In Figure

5-4d, we fix 𝜅 = 105, 𝜏 = 150, 𝑝𝐿𝐶 = 0.2 and vary the number of vertices in the

Cube dataset. Indeed, we find that the behavior of the worst-case bounds suggests

an unfavorable scaling in the problem dimension: at 𝑠3 = 8 vertices, the worst-

case bound overestimates the true error by approximately an order of magnitude; at

𝑠3 = 1000, it overestimates the true error by approximately 3 orders of magnitude. It

7𝑅* is the maximum likelihood estimator–the optimal point estimate given the data. Since there
is noise in the data, it is conceivable that the maximum likelihood estimate might actually be farther
away from the ground truth than a “suboptimal” estimate, which we observe in Fig. 5-4a.
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is unclear, at present, whether it is possible to remove this dependence on the problem

dimension. A more sophisticated analysis considering the specific structure of these

matrices (as defined in Appendix A.1) may yield more refined bounds.

5.4.2 Evaluation on standard SLAM benchmark datasets

In these experiments, we consider evaluation of the spectral initialization method on

several standard SLAM benchmark datasets. Figure 5-2 provides a qualitative com-

parison of three techniques for initialization: odometry only (i.e. composing mea-

surements between consecutive poses), the proposed spectral initialization approach,

and the globally optimal solution. We observe that spectral initialization provides

solutions that visually resemble the globally optimal solution. Table 5.1 gives our

quantitative results. For each method, we provide the computation time, objective

value, and number of iterations required for a Riemannian trust-region (RTR) opti-

mization method to converge to a critical point when using that initialization. With

the exception of odometry-only initialization, all of the methods considered enabled

the recovery of (verifiably) globally optimal solutions; that is, these initialization

methods coupled with standard local optimization techniques recovered globally op-

timal solutions without the need to explicitly solve a large-scale semidefinite program.

Both of the spectral methods (using the “full” pose-graph optimization data ma-

trix �̃� and the “rotation only” version using only 𝐿(�̃�𝜌)) provide estimates com-

petitive with the state-of-the-art chordal initialization method, generally attaining

near-optimal objective values.8 Interestingly, in their work, Moreira et al. [95] found

that the rotation-only spectral estimator attains a higher cost on the Sphere dataset

than alternative methods, as we do here; however, when we include the translation

measurements, we find that this discrepancy disappears. Similarly, the chordal esti-

mator also performs well on this dataset, despite the fact that, like the rotation-only

spectral initialization, it does not make use of translational measurements.

8Our current implementation is aimed at recovering high-precision eigenvector estimates, rather
than expedient computation. Despite this, spectral initialization is often faster than the chordal
approach, though occasionally this added precision leads to longer computation times than would
be necessary to obtain a good estimate, e.g. on the Garage dataset.
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Dataset Odom. Chord. Spec. (RO) Spec. Glob. Opt.

Sphere
Iter 65 6 8 4
Cost 1.14 ×109 1971.17 5594.19 1742.75 1687

Time (s) - 0.707 0.602 0.779

Torus
Iter 32 5 5 4
Cost 3.87 ×108 24669.2 25833.2 24272.7 24227

Time (s) - 1.316 1.501 1.199

Grid
Iter 30 6 6 4
Cost 1.97 ×1010 87252 86966.1 84486.4 84320

Time (s) - 8.747 18.806 0.25

Garage
Iter 1028 3 4 4
Cost 2.31 ×109 1.42 3.215 2.7 1.26

Time (s) - 0.201 0.136 25.7

Table 5.1: Standard SLAM benchmarks Objective value (cost) attained and com-
putation time required for each initialization method on several SLAM benchmarks.
We also report the number of iterations (Iter.) required for a Riemannian trust-
region optimization method to converge to a critical point. Note that the reported
computation time is only the time required to compute the initialization. Proposed
approaches are bold.

5.5 Summary

In this chapter we presented the first initialization methods equipped with explicit

performance guarantees adapted to the problems of pose-graph SLAM and rotation

averaging. Our approach is based upon a simple spectral relaxation of the esti-

mation problem, the form of which permits us to apply eigenvector perturbation

bounds to control the distance from our initialization to both the (latent) ground-

truth and the global minimizer of the estimation problem (the maximum likelihood

estimate) as a function of the measurement noise. Consistent with recent comple-

mentary work on information-theoretic aspects [17, 33, 72] and global optimization

methods [41, 51, 118] for SLAM and RA, our bounds highlight the central role that

spectral properties of the measurement network9 play in controlling the accuracy of

SLAM and RA solutions. Finally, we show experimentally that our spectral estima-

tor is very effective in practice, producing initializations of comparable or superior

quality at lower computational cost compared to existing state-of-the-art techniques.

9Specifically, the smallest nonzero eigenvalue 𝜆𝑑+1(
¯
𝑄), which can be thought of as a generalization

of the algebraic connectivity of the classical graph Laplacian.
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Chapter 6

Spectral measurement sparsification

for pose-graph SLAM

However, as we aim to scale SLAM algorithms to the setting of “lifelong” autonomy,

particularly on compute- or memory-limited platforms, a robot must be able to de-

termine what information should be kept, and what can safely be forgotten [119]. In

particular, in the setting of graph-based SLAM and rotation averaging, the number

of edges in a measurement graph determines both the memory required to store a

robot’s observations as well as the computation time of algorithms employed for state

estimation using this measurement graph.

While there has been substantial work on the topic of measurement pruning (or

sparsification) in lifelong SLAM (e.g. [22, 23, 68, 76, 77]), most existing methods rely

on heuristics for sparsification whereby little can be said about the quality of the sta-

tistical estimates obtained from the sparsified graph versus the original. Recent work

on performance guarantees in the setting of pose-graph SLAM and rotation averaging

identified the spectral properties—specifically the algebraic connectivity (also known

as the Fiedler value)—of the measurement graphs encountered in these problems to

be central objects of interest, controlling not just the best possible expected perfor-

mance (per earlier work on Cramér-Rao bounds [17, 33, 72]), but also the worst-case

error of estimators [48, 118]. These observations suggest the algebraic connectivity as

a natural measure of graph quality for assessing SLAM graphs. This motivates our
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use of the algebraic connectivity as an objective in formulating the graph sparsification

problem.

Specifically, we propose a spectral approach to pose graph sparsification which

maximizes the algebraic connectivity of the measurement graph subject to a constraint

on the number of allowed edges.1 As we discuss, this corresponds to E-optimal design

in the setting of pose-graph SLAM [111]. This specific problem turns out to be an

instance of the maximum algebraic connectivity augmentation problem, which is NP-

Hard [96]. To address this, we propose to solve a computationally tractable relaxation

and round solutions obtained to the relaxed problem to approximate feasible solutions

of the original problem. Relaxations of this form have been considered previously;

in particular Ghosh and Boyd [58] developed a semidefinite program relaxation to

solve problems of the form we consider. However, these techniques do not scale to the

size of typical problems encountered in graph-based SLAM. To this end, we propose

a first-order optimization approach that we show is practically fast for even quite

large SLAM problems. Moreover, we show that the dual to our relaxation provides

tractable, high-quality bounds on the suboptimality of the solutions we provide with

respect to the original problem.

In summary, we present an approach for pose graph sparsification by maximizing

the algebraic connectivity of the measurement graph, a key quantity which has been

shown to control the estimation error of pose-graph SLAM solutions. Our method,

based on convex relaxation, is simple and computationally inexpensive, and admits

formal post hoc performance guarantees on the quality of the solutions it provides.

In experiments on several benchmark pose-graph SLAM datasets, we show that our

approach quickly produces high-quality sparsification results which retain the con-

nectivity of the graph and better preserve the quality of SLAM solutions compared

to a baseline which does not consider graph connectivity.

1Our method is related to, but should not be confused with, spectral sparsification [130]. Similar
to spectral sparsification, we aim to sparsify graphs in a way that preserves their spectral properties.
However, our method differs in that we focus only on the algebraic connectivity, whereas traditionally
spectral sparsification aims to preserve the entire graph Laplacian spectrum.
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6.1 Problem formulation

We consider graph sparsification in the setting of pose-graph SLAM. Recall that pose-

graph SLAM is the problem of estimating 𝑛 unknown values 𝑥𝑖, . . . , 𝑥𝑛 ∈ SE(𝑑) given

a subset of measurements of their pairwise relative transforms �̃�𝑖𝑗. We adopt the

same generative model for rotation and translation measurements as in the previous

chapter (given in eq. (5.3)). In turn, we obtain the maximum-likelihood estimation

procedure given in Problem 4.

In the last chapter, we showed that the smallest (nonzero) eigenvalue of the ro-

tational weight graph Laplacian 𝐿(𝑊 𝜌) (eq. (A.1b)) controls the worst-case error of

solutions to Problem 4; this is the algebraic connectivity (or Fiedler value) of the

graph having nodes in correspondence with robot poses 𝑥𝑖 and edge weights equal

to each 𝜅𝑖𝑗. The corresponding eigenvector attaining this value is called the Fiedler

vector. The method we present in this chapter is applicable to any graph 𝒢 with

Laplacian 𝐿, but because of the specific connections between the rotational weight

graph and performance of estimators for SLAM we will take 𝐿 = 𝐿(𝑊 𝜌) in all appli-

cations we consider here.

The Laplacian of a graph has several well-known properties that we will use here.

The Laplacian 𝐿 of a graph can be written as a sum of the Laplacians of the subgraphs

induced by each of its edges. A Laplacian is always positive-semidefinite, and the “all

ones” vector 1 of length 𝑛 is always in its kernel. Finally, a graph has positive algebraic

connectivity 𝜆2(𝐿) > 0 if and only if it is connected.2

It will be convenient to partition the edges as ℰ = ℰ𝑜 ∪ ℰ𝑐, ℰ𝑜 ∩ ℰ𝑐 = ∅ into a

fixed set of edges ℰ𝑜 and a set of 𝑚 candidate edges ℰ𝑐, and where 𝐿𝑜 and 𝐿𝑐 are

the Laplacians of the subgraphs induced by ℰ𝑜 and ℰ𝑐. For our purposes, the sub-

graph induced by ℰ𝑜 on 𝒱 will typically be constructed from sequential odometric

measurements (therefore, |ℰ𝑜| = 𝑛 − 1), but this is not a requirement of our general

approach.3 It will be helpful in the subsequent presentation to “overload” the defini-

2More specifically, the number of zero eigenvalues of a Laplacian is equal to the number of
connected components of its corresponding graph.

3In particular, to apply our approach we should select 𝐿𝑜 and 𝐾 to guarantee that the feasible
set for Problem 7 contains at least one tree. Then, it is clear that the optimization in Problem 7

105



tion of 𝐿(𝑊 𝜌). Specifically, let 𝐿 : R𝑚 → S𝑛+ be the affine map constructing the total

graph Laplacian from a weighted combination of edges in ℰ𝑐:

𝐿(𝜔) , 𝐿𝑜 +
𝑚∑︁
𝑘=1

𝜔𝑘𝐿
𝑐
𝑘, (6.1)

where 𝐿𝑐𝑘 is the Laplacian of the subgraph induced by edge 𝑒𝑘 = {𝑖𝑘, 𝑗𝑘} of ℰ𝑐.

Our goal in this work will be to identify a subset of ℰ* ⊆ ℰ𝑐 of fixed size |ℰ*| =

𝐾 (equivalently, the edge selection 𝜔), which maximizes the algebraic connectivity

𝜆2(𝐿(𝜔)). This corresponds to the following optimization problem:

Problem 7 (Algebraic connectivity maximization).

𝑝* = max
𝜔∈{0,1}𝑚

𝜆2(𝐿(𝜔))

|𝜔| = 𝐾.

(6.2)

6.2 Approach

Problem 7 is a variant of the maximum algebraic connectivity augmentation problem,

which is NP-Hard [96]. The difficulty of Problem 7 stems, in particular, from the

integrality constraint on the elements of 𝜔. Consequently, our general approach will be

to solve a simpler problem obtained by relaxing the integrality constraints of Problem

7, and, if necessary, rounding the solution to the relaxed problem to a solution in the

feasible set of Problem 7. In particular, we consider the following Boolean relaxation

of Problem 7:

Problem 8 (Boolean Relaxation of Problem 7).

max
𝜔∈[0,1]𝑚

𝜆2(𝐿(𝜔))

1
T𝜔 = 𝐾.

(6.3)

will always return a connected graph, since 𝜆2(𝐿(𝜔)) > 0 if and only if the corresponding graph is
connected. Note that this condition is always easy to arrange: for example, we can start with 𝐿𝑜 a
tree, as we do here, or (even more simply) take 𝐿𝑜 to be the zero matrix and simply take 𝐾 ≥ 𝑛−1.
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Algorithm 2 MAC Algorithm
Input: An initial iterate 𝜔
Output: An approximate solution to Problem 7
1: function MAC(𝜔)
2: 𝜔 ←FrankWolfeAC(𝜔) ◁ Solve Problem 8
3: return Π(𝜔) ◁ Round solution; eq. (6.7)
4: end function

Algorithm 3 Frank-Wolfe Method for Problem 8
Input: An initial feasible iterate 𝜔
Output: An approximate solution to Problem 8
1: function FrankWolfeAC(𝜔)
2: for 𝑡 = 0, . . . , 𝑇 do
3: Compute a Fiedler vector 𝑦* of 𝐿(𝜔)
4: ∇𝐹 (𝜔)𝑘 ← 𝑦*T𝐿𝑐𝑘𝑦

*, 𝑘 = 1, . . . ,𝑚 ◁ Eq. (6.5)
5: 𝑠𝑡 ← argmax𝑠 𝑠

T∇𝐹 (𝜔) ◁ Prob. 9; eq. (6.6)
6: 𝛼← 2/(2 + 𝑡) ◁ Compute step size
7: 𝜔 ← 𝜔 + 𝛼 (𝑠𝑡 − 𝜔)
8: end for
9: return 𝜔

10: end function

Relaxing the integrality constraints of Problem 7 dramatically alters the difficulty

of the problem. In particular, we know (cf. [58]):

Lemma 8. The function 𝐹 (𝜔) = 𝜆2(𝐿(𝜔)) is concave on the set 𝜔 ∈ [0, 1]𝑚,1T𝜔 =

𝐾.

Consequently, solving Problem 8, then, amounts to maximizing a concave function

over a convex set; this is in fact a convex optimization problem (one can see this by

simply considering minimization of the objective −𝐹 (𝜔)) and hence globally solvable

(see, e.g. [11, 19]). Since a solution to Problem 8 need not be feasible for the

original problem, we then round solutions to the relaxed problem to their nearest

correspondents in the feasible set of Problem 7.

6.2.1 Solving the relaxation

There are several methods which could, in principle, be used to solve the relaxation in

Problem 8. For example, Ghosh and Boyd [58] consider solving an equivalent semidef-
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inite program. This approach has the advantage of fast convergence (in terms of the

number of iterations required to compute an optimal solution), but can nonetheless

be slow for the large problem instances (𝑚 > 1000) typically encountered in the

SLAM setting. Instead, our algorithm for maximizing algebraic connectivity (MAC),

summarized in Algorithm 2, employs an inexpensive subgradient (more precisely, su-

pergradient) approach to solve Problem 8, then rounds its solution to the nearest

element of the feasible set for Problem 7.4

In particular, MAC uses the Frank-Wolfe method (also known as the conditional

gradient method), a classical approach for solving convex optimization problems of

the form in Problem 8 [11]. At each iteration, the Frank-Wolfe method requires (1)

linearizing the objective 𝐹 at a particular 𝜔, (2) maximizing the linearized objective

over the (convex) feasible set, and (3) taking a step in the direction of the solution to

the linearized problem. The remainder of this section gives a detailed exposition of

our adaptation of the Frank-Wolfe method to the problem of algebraic connectivity

maximization, which is summarized in Algorithm 3.

The Frank-Wolfe method is particularly advantageous in this setting since the

feasible set for Problem 8 is the intersection of the hypercube with the linear subspace

determined by 1
T𝜔 = 𝐾 (a linear equality constraint). Consequently this problem

amounts to solving a linear program, which can be done easily (and in fact, as we show,

admits a simple closed-form solution). In particular, the direction-finding subproblem

for the Frank-Wolfe method is the following linear program:

Problem 9 (Direction-finding subproblem). Fix an iterate 𝜔 ∈ [0, 1]𝑚, 1T𝜔 = 𝐾.

The direction-finding subproblem is to find the point 𝑠 solving the following linear

program:
max
𝑠∈[0,1]𝑚

𝑠T∇𝐹 (𝜔),

1
T𝑠 = 𝐾.

(6.4)

In order to compute the linearized objective in Problem 9 we require a supergradi-

ent of the original objective function (in the usual case where 𝐹 is differentiable at 𝜔,
4Supergradients are simply the concave analogue of subgradients; i.e., the tangent hyperplane

formed by any supergradient of a concave function 𝐹 must lie above 𝐹 .
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this is simply the gradient of 𝐹 ). It turns out, we can always recover a supergradient

of 𝐹 at a particular 𝜔 in terms of a Fiedler vector of 𝐿(𝜔). Specifically, we have the

following theorem (which we prove in Appendix B):

Theorem 9 (Supergradients of 𝐹 (𝜔)). Let 𝑦*(𝜔) be any eigenvector of 𝐿(𝜔) corre-

sponding to 𝜆2(𝐿(𝜔)). Then:

∇𝐹 (𝜔) =
[︂
𝜕𝐹

𝜕𝜔1

, . . . ,
𝜕𝐹

𝜕𝜔𝑚

]︂T
,

𝜕𝐹

𝜕𝜔𝑘
= 𝑦*(𝜔)T𝐿𝑐𝑘𝑦

*(𝜔),

(6.5)

is a supergradient of 𝐹 at 𝜔.

Therefore, supergradient computation can be performed by simply recovering an

eigenvector of 𝐿(𝜔) corresponding to 𝜆2(𝐿(𝜔)).

Problem 9 is a linear program, for which several solution techniques exist [11].

However, in our case, Problem 9 admits a simple, closed-form solution 𝑠* attaining

its optimal value (which we prove in Appendix B):

Theorem 10 (A closed-form solution to Problem 9). Let 𝒮*, |𝒮*| = 𝐾 be the set

containing the indices of the 𝐾 largest elements of ∇𝐹 (𝜔), breaking ties arbitrarily

where necessary. The vector 𝑠* ∈ R𝑛 with element 𝑘 given by:

𝑠*𝑘 =

⎧⎪⎨⎪⎩1, 𝑘 ∈ 𝒮*,

0, otherwise,
(6.6)

is an optimizer for Problem 9.

In this work, we use a simple decaying step size 𝛼 to update 𝜔 in each iteration.

While in principle, we could instead use a line search method [11, Sec. 2.2]), this

would potentially require many evaluations of 𝐹 (𝜔) within each iteration. Since

every evaluation of 𝐹 (𝜔) requires an eigenvalue computation, this can become a

computational burden for large problems.
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In the event that the optimal solution to the relaxed problem is integral, we ensure

that we have also obtained an optimal solution to the original problem. However,

this need not be the case in general. In the (typical) case where integrality does not

hold, we project the solution to the relaxed problem onto the original constraint set.

In this case, an integral solution Π(𝜔) can be obtained by rounding the largest 𝐾

components of 𝑠 to 1, and setting all other components to zero:

Π(𝜔)𝑘 ,

⎧⎪⎨⎪⎩1, if 𝜔𝑘 is in the largest 𝐾 elements of 𝜔,

0, otherwise.
(6.7)

In general, the Frank-Wolfe algorithm offers sublinear (i.e. 𝒪(1/𝑇 ) after 𝑇 itera-

tions) convergence to the globally optimal solution in the worst case [50]. However,

in this context it has several advantages over alternative approaches. First, we can

bound the sparsity of a solution after 𝑇 iterations. In particular, we know that the

solution after 𝑇 iterations has at most 𝐾𝑇 nonzero entries. Second, the gradient com-

putation requires only a single computation of the minimal 2 dimensional eigenspace

of an 𝑛×𝑛 matrix. This can be performed quickly using a variety of methods (e.g. the

preconditioned Lanczos method). Finally, as we showed, the direction-finding sub-

problem in Problem 9 admits a simple closed-form solution (as opposed to a projected

gradient method which requires projection onto an ℓ1-ball). In consequence, despite

the fact that gradient-based methods may require many iterations to converge to

globally optimal solutions, high-quality approximate solutions can be computed fast

at the scale necessary for SLAM problems. As we show in the following section, our

approach admits post hoc suboptimality guarantees even in the event that we termi-

nate optimization prematurely (e.g. when a fast but potentially suboptimal solution

is required). Critically, these suboptimality guarantees ensure the quality of the so-

lutions of our approach not only with respect to the relaxation, but also with respect

to the original problem.
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6.2.2 Post hoc suboptimality guarantees

Algorithm 3 admits several post hoc suboptimality guarantees. Let 𝑝* be the optimal

value of the original nonconvex maximization in Problem 7. Since Problem 8 is a

relaxation of Problem 7, in the event that optimality attains for a vector 𝜔*, we

know:

𝐹 (Π(𝜔*)) ≤ 𝑝* ≤ 𝐹 (𝜔*). (6.8)

Therefore, the suboptimality of a rounded solution Π(𝜔*) is bounded as follows:

𝑝* − 𝐹 (Π(𝜔*)) ≤ 𝐹 (𝜔*)− 𝐹 (Π(𝜔*)). (6.9)

Consequently, in the event that 𝐹 (𝜔*) − 𝐹 (Π(𝜔*)) = 0, we know that Π(𝜔*) must

correspond to an optimal solution to Problem 7.

The above guarantees apply in the event that we obtain a maximizer 𝜔* of Problem

8. This would seem to pose an issue if we aim to terminate optimization before we

obtain a verifiable, globally optimal solution to Problem 8 (e.g. in the presence

of real-time constraints). Since these solutions are not necessarily globally optimal

in the relaxation, we do not know if their objective value is larger or smaller than

the optimal solution to Problem 7. However, we can in fact obtain per-instance

suboptimality guarantees of the same kind for any estimate �̂� through the dual of

our relaxation (cf. Lacoste-Julien et al. [78, Appendix D]). Here, we give a derivation

of the dual upper bound which uses only the concavity of 𝐹 .

Since 𝐹 is concave, for any 𝑥, 𝑦 ∈ [0, 1]𝑚, 1T𝑥 = 1
T𝑦 = 𝐾 we have:

𝐹 (𝑦) ≤ 𝐹 (𝑥) + (𝑦 − 𝑥)T∇𝐹 (𝑥). (6.10)

111



Consider then the following upper bound:

𝐹 (𝜔*) ≤ 𝐹 (�̂�) + (𝜔* − �̂�)T∇𝐹 (�̂�)

≤ max
𝑠∈[0,1]𝑚,1T𝑠=𝐾

𝐹 (�̂�) + (𝑠− �̂�)T∇𝐹 (�̂�)

= 𝐹 (�̂�)− �̂�T∇𝐹 (�̂�) + max
𝑠∈[0,1]𝑚,1T𝑠=𝐾

𝑠T∇𝐹 (�̂�).

(6.11)

We observe that the solution to the optimization in the last line of (6.11) is exactly

the solution to the direction-finding subproblem (Problem 9). Letting 𝑠 be a vector

obtained as a solution to Problem 9 at �̂�, we obtain the following dual upper bound:

𝐹𝐷(�̂�) , 𝐹 (�̂�) +∇𝐹 (�̂�)T(𝑠− �̂�). (6.12)

Now, from (6.11), we have 𝐹𝐷(𝜔) ≥ 𝐹 (𝜔*) for any 𝜔 in the feasible set. In turn,

it is straightforward to verify that the following chain of inequalities hold for any

estimator �̂� in the feasible set of the Boolean relaxation:

𝐹 (Π(�̂�)) ≤ 𝑝* ≤ 𝐹𝐷(�̂�), (6.13)

with the corresponding suboptimality guarantee:

𝑝* − 𝐹 (Π(�̂�)) ≤ 𝐹𝐷(�̂�)− 𝐹 (Π(�̂�)). (6.14)

Moreover, we can always recover a suboptimality bound on �̂� with respect to the

optimal value 𝐹 (𝜔*) to relaxed problem as:

𝐹 (𝜔*)− 𝐹 (�̂�) ≤ 𝐹𝐷(�̂�)− 𝐹 (�̂�) (6.15)

The expression appearing on the right-hand side of (6.15) is the (Fenchel) duality gap.

Equation (6.15) also motivates the use of the duality gap as a stopping criterion for

Algorithm 3: if the gap is sufficiently close to zero (e.g. to within a certain numerical

tolerance), we may conclude that we have reached an optimal solution 𝜔* to Problem
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(a) Our approach.

(b) Naïve baseline.

Figure 6-1: Qualitative results for pose-graph sparsification. Pose-graph opti-
mization results for the City10K dataset with varying degrees of sparsity using (a)
our method and (b) a naïve baseline which selects the most certain measurements.
Left to right: 20%, 40%, 60%, 80%, and 100% of the candidate edges.

Dataset No. of Nodes No. of Candidate (Loop Closure) Edges
KITTI 02 4661 43
KITTI 05 2761 66

Intel 1728 785
AIS2Klinik 15115 1614
City10K 10000 10688

Table 6.1: Summary of the datasets used in our experiments.

8.

6.3 Experimental results

We implemented the MAC algorithm in Python and all computational experiments

were performed on a 2.4 GHz Intel i9-9980HK CPU. For computation of the Fiedler

value and the corresponding vector, we use TRACEMIN-Fiedler [89, 125]. In all

experiments, we run MAC for a maximum of 20 iterations, or when the duality gap

in equation (6.15) reaches a tolerance of 10−8.

We evaluated our approach using several benchmark pose-graph SLAM datasets.
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(a) KITTI 02

(b) KITTI 05

(c) Intel

(d) AIS2Klinik

(e) City10K

Figure 6-2: Quantitative results for pose-graph sparsification. Pose-graph
optimization results for several benchmark datasets: (a) KITTI 02 (b) KITTI 05 ,
(c) Intel , (d) AIS2Klinik , and (e) City10K with varying degrees of sparsity (as percent
of candidate edges added). Left to right: The algebraic connectivity of the graphs
obtained by our method versus the naïve baseline (larger is better), the objective value
of the maximum-likelihood estimator for each sparsified graph under the original
objective, i.e. with all edges retained (smaller is better; note the log-scale), the
SO(𝑑) orbit distance between a maximum-likelihood estimator computing using the
sparsified graph and a one computed for the graph containing all of the candidate
edges (smaller is better), and the computation time for our approach.
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For each dataset, we use odometry edges (between successive poses) to form the

base graph and loop closure edges as candidate edges. We consider selection of

10%, 20%, . . . , 100% of the candidate loop closure edges in the sparsification prob-

lem. We present results on five datasets in this document (summarized in Table

6.1). In particular, we consider here the Intel dataset, the City10K dataset, KITTI

dataset sequences 02, and 05, and the AIS2Klinik dataset. The Intel dataset and

the AIS2Klinik dataset are both obtained from real data, while the City10K dataset

is synthetic. The City10K dataset, however, contains far more candidate edges,

and therefore serves as a reasonable “stress test” for the computation time of our

approach. We compare our approach to a naïve heuristic method which does not

consider graph topology. Specifically, the naïve method selects the edges with the

most confident rotation measurements (i.e. the set of 𝐾 edges {𝑖, 𝑗} with the largest

𝜅𝑖𝑗). This simple heuristic approach serves two purposes: First, it provides a baseline,

topology-agnostic approach to demonstrate the impact of considering graph connec-

tivity in a sparsification procedure; second, we use this method to provide a sparse

initial estimate to our algorithm. For each method, we compare the graph connectiv-

ity (as measured by the Fiedler value) as well as the quality of maximum-likelihood

estimators for pose-graph optimization (i.e. solutions to Problem 4) under the edge

sets selected by each method. We use SE-Sync [118] to compute the globally optimal

estimate of robot poses in each case.5

Figure 6-1 gives a qualitative comparison of the results from our approach as

compared with the baseline on the City10K dataset across a range of candidate loop

closures allowed. We observe that even retaining 60% of the candidate edges, the

quality of the results provided by the baseline method degrade significantly compared

to those of the full set of loop closures. In contrast, our sparsification approach leads

to high-quality estimates even with a significant reduction in the number of edges.

For a quantitative comparison of each method, we report three performance mea-

sures: (1) the algebraic connectivity 𝜆2(𝐿(𝜔)) of the graphs determined by each edge

selection 𝜔, (2) the “full” objective value from Problem 4 (i.e. keeping 100% of the

5In all of our experiments, SE-Sync returned certifiably-optimal solutions to Problem 4.
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edges) attained by globally optimal solutions to the sparsified problems, and (3) the

SO(𝑑)-orbit distance between the rotational states of a maximum-likelihood estimator

for the sparsified problem and those of a maximum-likelihood estimator for the origi-

nal (full) objective. The SO(𝑑)-orbit distance between two rotational state estimates

is defined as:
𝑑𝒮(𝑋, 𝑌 ) , min

𝐺∈SO(𝑑)
‖𝑋 −𝐺𝑌 ‖𝐹 ,

𝑋, 𝑌 ∈ SO(𝑑)𝑛,

(6.16)

which can be computed in closed form by means of a singular value decomposition

(see Rosen et al. [118, Theorem 5]). The “full” objective value attained by solutions

to the sparsified problems serves as one indicator of “how close” solutions to the

sparsified problem are to the MLE for the “full” problem. If the “full” objective value

attained by the MLE for a sparsified graph is close to that of the MLE computed

using 100% of the candidate edges, the MLE for the sparsified graph is likely also

a high-quality solution under the full objective. The SO(𝑑)-orbit distance quantifies

the actual deviation (up to global symmetry) between the estimated rotational states

in each solution. Since the translational states are recovered analytically (per [118]),

this serves as a useful measure, independent of the global scale of the translational

states, of the degradation in solution quality from the “full” MLE as we sparsify the

graph.

Figure 6-2 summarizes our quantitative results on each benchmark dataset. Our

approach consistently achieves better connected graphs (as measured by the algebraic

connectivity). In most cases, a maximum of 20 iterations was enough to achieve solu-

tions to the relaxation with algebraic connectivity very close to the dual upper bound

(and therefore nearly globally optimal). Moreover, maximum-likelihood estimators

for Problem 4 computed using the sparsified measurement graphs from our method

perform significantly better in terms of their “full” objective value and their deviation

from a MLE computed using all of the measurement edges.

Beyond providing high-quality sparse measurement graphs, our approach is also

fast. For the Intel dataset, all solutions were obtained in less than 250 milliseconds.

Sparsifying the (larger) AIS2Klinik dataset required up to 700 ms, but only around
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100 ms when larger edge selections were allowed, as the duality gap tolerance was

reached in fewer than the maximum allowed iterations of Frank-Wolfe method. The

largest dataset (in terms of candidate edges) is the City10K dataset, with over 10000

loop closure measurements to select from. Despite this, our approach produces near-

optimal solutions in just 2 seconds.

With respect to the suboptimality guarantees of our approach, it is interesting

to note that on both the Intel and City10K datasets, the rounding procedure intro-

duces fairly significant degradation in algebraic connectivity - particularly for more

aggressive sparsity constraints. In these cases, it seems that the Boolean relaxation

we consider leads to fractional optimal solutions, rather than solutions amounting to

hard selection of just a few edges. It is not clear in these cases whether the integral

solutions obtained by rounding are indeed suboptimal for the Problem 7, or whether

this is a consequence of the integrality gap between global optima of the relaxation

and of Problem 7.6

At present we do not have access to an implementation of the D-optimal sparsi-

fication approaches considered in [73]. However, we evaluate our method on similar

(and similarly sized) datasets, and a comparison of the computation times suggests

that our approach compares favorably in computation time and (consequently) the

scale of problems we can consider. For example, Khosoussi et al. [73, Sec. 9.4] report

computation times of “≫ 10 minutes” to solve a convex relaxation of the D-optimal

sparsification problem on the City10K dataset (versus ≈ 2 seconds per Figure 6-

2e). In light of this fact, and since both the D-optimality criterion and E-optimality

criterion are essentially variance-minimizing criteria, in the event that one requires

D-optimal designs specifically, an interesting avenue for future work would be to use

our E-optimal designs to supply an initial estimate to, for example, the convex re-

laxation approach of Khosoussi et al. [73]. A detailed empirical comparison of the

impact of different optimal design criteria on the quality of SLAM solutions would

be tremendously helpful for practitioners, and would also be an interesting area for

6In general, even simply verifying the global optimality of solutions to Problem 7 is NP-Hard
[96].
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future work.

6.4 Summary

In this chapter, we proposed an approach for pose-graph measurement sparsification

by maximizing the algebraic connectivity of the measurement graphs, a key quantity

which has been shown to control the estimation error of pose-graph SLAM solutions.

Our algorithm, MAC, is based on a first-order optimization approach for solving a

convex relaxation of the maximum algebraic connectivity augmentation problem. The

algorithm itself is simple and computationally inexpensive, and, as we showed, admits

formal post hoc performance guarantees on the quality of the solutions it provides. In

experiments on several benchmark pose-graph SLAM datasets, our approach quickly

produces high-quality sparsification results which better preserve the connectivity of

the graph and, consequently, the quality of SLAM solutions computed using those

graphs. An interesting area for future work is the empirical comparison of different

optimality criteria for the pose graph sparsification problem. Finally, in this work we

consider only the removal of measurement graph edges. For lifelong SLAM applica-

tions, an important aspect of future work will be to combine these procedures with

methods for node removal (e.g. [22, 28, 68]).
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Chapter 7

Conclusion

This thesis considers the development of lifelong and learning-augmented robot nav-

igation systems. It is desired that any such system be both robust and efficient. The

practical limitations of real systems make this a tremendous challenge: often robust-

ness can be achieved at the expense of efficiency and vice versa, but realizing both

simultaneously is necessary for true lifelong autonomy. To this end, this thesis makes

several contributions:

In Chapter 3, we introduce the DC-SAM library and a new optimization approach

for inference in hybrid factor graphs. We demonstrate the utility of the hybrid factor

graph framework for solving common inference problems arising in robot perception,

emphasizing robust models.

In Chapter 4, we leverage the hybrid factor graph representation and DC-SAM

library to combine the (discrete) output of learned object detection and classification

models with (continuous) geometric measurements for estimation. In turn, we present

an approach to robust object-level semantic SLAM which accounts for uncertainty in

semantic predictions and ambiguity in measurement-landmark correspondences.

In Chapter 5, we focus on pose-graph SLAM and ask whether it is possible to pro-

duce an initial guess that achieves provably bounded estimation error and deviation

from the globally optimal estimate. We show that it is possible and present an al-

gorithm based on spectral decomposition that admits formal performance guarantees

on solution quality. In the process, we identify the algebraic connectivity or Fiedler
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value of the measurement graphs arising in SLAM as a key parameter controlling

estimation accuracy.

Finally, in Chapter 6 we consider long-term pose-graph SLAM, where controlling

the computational burden and memory requirements of SLAM requires sparsifying

the measurement graph. Motivated by the insights from Chapter 5, we develop the

MAC algorithm for pose-graph sparsification, which designs sparse pose-graphs by

maximizing algebraic connectivity. MAC, based on convex relaxation, admits formal

post hoc suboptimality guarantees on the connectivity of the sparse graphs it provides.

7.1 Limitations and Future Work

In retrospect, the central problem of robustness in lifelong robot perception applica-

tions lies not in the particulars of how we perform inference within a given model,

but rather in the unavoidable fact that a robot building a representation of the world

online is necessarily “building the plane while flying it.” That is to say, every robot

perception system to date relies on a set of heuristics that dictate how a model is

constructed as new data is collected. Only once that model is constructed can infer-

ence be performed, whereby we estimate the parameters of the model. It is in those

heuristic procedures that dynamically construct the model that modern perception

systems fail. The position of this thesis is not that we should attempt to avoid such

rules entirely, but rather to enable the design and engineering of perception systems

that make representing ambiguity about the model itself an essential consideration.

This opinion is summarized concisely by the following quote:

Furthermore, I believe systems make irreversible decisions (such as fea-

ture/no feature) too early in the processing of data. The motivation is

usually to reduce the amount of data that need to be processed, but the

results can be disastrous. Methods that postpone irreversible commit-

ments should receive more attention.

Tomás Lozano-Pérez, foreword to Autonomous Robot Vehicles [83]

The problem of efficiency, on the other hand, lies primarily in the difficulty in
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determining “what is important” for the navigation task. Indeed, until relatively

recently, it was not deeply understood what aspects of the SLAM problem control

estimation error (even in the setting where data association is assumed to be known).

In answering this question, the contributions of this thesis point toward spectral

graph theory, which seems to hold important keys to understanding what aspects of

a measurement graph in SLAM control accuracy and therefore what information can

safely be discarded. It is as yet unclear, however, to what extent information should

be discarded (as we do in Chapter 6) or instead summarized (and if so, how to do it).

It is clear that much work remains to be done on these topics. The following

sections provide some key directions for future work and areas for improvement.

7.1.1 Expressive models and robust inference

The work on hybrid factor graphs presented in Chapter 3 and Chapter 4 opens up

a number of interesting directions for future work. From a modeling standpoint, the

ability to cleanly capture dependencies between discrete or symbolic quantities and

continuous (typically, but not necessarily) geometric quantities makes hybrid factor

graphs a natural representation for many important robot perception problems.

To this end, one path forward involves using these tools to combine the output of

multiple learned models (which may relate discrete quantities, continuous quantities,

or a mixture of both). For example, we may want to combine predictions from an

object classification model, a category-level object shape model, and real 3D obser-

vations from a depth camera. In this way, we could leverage hybrid factor graphs

as a generic representation for fusing real sensor data with predictions from learned

models.

The methods presented in Chapters 3 and 4 are practically fast in part because

they rely on local optimization techniques that may converge to bad solutions if ini-

tialized poorly. This is an important limitation of these techniques that warrants

further investigation. We discuss this issue in detail in Chapter 3. While we consider

the problem of producing “provably good” initial solutions for pose-graph optimiza-

tion in Chapter 5, addressing this challenge for general hybrid factor graphs is more
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challenging (and perhaps particular problems can benefit from application-specific

considerations, e.g. additional sources of trusted information, in the same way that

one may often rely on odometric measurements for initialization in short-term SLAM

problems).

7.1.2 Self-supervised and unsupervised learning

One issue left unexplored by this thesis is continual learning, i.e. where a perception

model (such as an object detector) is trained (or refined) online as a robot navigates

through the environment. The ability to perform robust semantic (object-based)

SLAM opens up the possibility of using an optimized map produced by a SLAM

method as a supervisory signal for learning-based perception methods like object

detectors or object pose estimators. While some initial work to this end has begun

[85], this topic remains relatively under-explored.

Beyond self-supervision, we might consider the issue of discovering object cate-

gories in an unsupervised manner. Outside of the work in this thesis, we have made

some of our first steps performing unsupervised multi-robot object category learning

[44]. However, this work did not make use of globally consistent three-dimensional

world models like those produced by SLAM methods, instead discovering object struc-

ture through spatial correlation within images and temporal correlation between sub-

sequent image frames in a video. Combining these ideas with a SLAM method to

leverage 3D structure would be a natural area for future development.

From a tooling perspective, closer integration with tools for machine learning

would be tremendously helpful. Early examples for continuous factor graphs include

Theseus [109] and PyPose [141]. However, to date, not of these tools directly support

working with hybrid factor graphs.

7.1.3 Performance guarantees for robot perception

From our developments in Chapter 5 it is clear that much remains to be understood

about performance guarantees for robot perception methods. While some recent
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work has pushed this line of research further (e.g. [24]), the topic of performance

guarantees for robot perception still needs to be explored. In the context of the

work presented in this thesis, there are a few next steps. First, the bounds we

present in Chapter 5 rely on knowledge of the actual error in the data in order to

be computed, making them impractical. This could be addressed by considering

the statistics of the measurements as determined by a sensor model (rather than the

specific measurements obtained by the robot). Matrix concentration inequalities (see,

e.g., [137]) are the right mathematical tools for this sort of analysis, and this is an

interesting direction for future developments. Second, the bounds themselves appear

to be (empirically) quite loose in the scenarios we examined. A more refined analysis

(perhaps with less “slack” in the bounds) could be tremendously useful, especially

if it could explain the high-quality results of the spectral and chordal initialization

techniques. Progress in this direction may point to, for example, a statistical regime

in which certain perception problems can be said to be “easier” than others in a formal

mathematical sense.

7.1.4 Efficient inference, compression, and hierarchy

A key limitation of the methods presented in Chapter 6 is that we discard information

during the sparsification process. It stands to reason that perhaps in some cases

we might be able to “compensate” for a discarded measurement in a pose-graph by

strengthening the influence of other available measurements. Spectral sparsification

methods (see, e.g. [130]) allow for the weights of retained edges to be modified (while

provably sparsifying graphs) in a manner that aims to preserve not just the algebraic

connectivity of the graph but the whole spectrum of the graph Laplacian. Since the

spectrum of the graph Laplacian is closely connected to the cost of SLAM solutions

for the corresponding pose graph, these techniques may provide better (“compressed”)

graphs for SLAM than the MAC algorithm. Initial explorations with these spectral

sparsification techniques have been promising, but further development of these ideas

is a priority for future work. Similar spectral techniques have been explored for node

sparsification, but have not yet been applied in the context of SLAM problems; this
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is another interesting area for future research.

While ideas from spectral graph theory have established mathematical links be-

tween graph properties and estimation error for SLAM methods that can be used for

graph sparsification (or “compression”), these methods do not exploit semantics for

the purposes of summarization. A robot equipped with a semantic understanding of

the world could use knowledge of hierarchy to summarize task-relevant information.

For example, a robot may not need to actively update information about the contents

of the inside of buildings while navigating down a street, but once it enters a building,

that data becomes relevant. Hierarchical representations, such as the object-based

representations of Ok et al. [103], the S-graphs of Bavle et al. [9], or 3D dynamic

scene graphs (e.g., Hughes et al. [66] and Rosinol et al. [121]) may enable this type of

semantically-informed graph compression. Along these lines, it would be interesting

to consider whether hybrid factor graph models or the DC-SAM tools developed as

part of this thesis may be useful for the development of these technologies.
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Appendix A

Proofs for Chapter 5

A.1 Structure of the data matrices

In this appendix, we provide the definitions of the various matrices appearing in the

parameterization of the rotation averaging and pose-graph SLAM problems. 𝐿(𝑊 𝜏 )

and 𝐿(𝑊 𝜌) denote the Laplacians of the translational weight graph𝑊 𝜏 , (𝒱 , ℰ , {𝜏𝑖𝑗})

and rotational weight graph 𝑊 𝜌 , (𝒱 , ℰ , {𝜅𝑖𝑗}), respectively, with undirected edges

{𝑖, 𝑗} ∈ ℰ . These are 𝑛× 𝑛 matrices with 𝑖, 𝑗-entries:

𝐿(𝑊 𝜏 )𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀
𝑒∈𝛿(𝑖) 𝜏𝑒, 𝑖 = 𝑗,

−𝜏𝑖𝑗, {𝑖, 𝑗} ∈ ℰ ,

0, {𝑖, 𝑗} /∈ ℰ ,

(A.1a)

𝐿(𝑊 𝜌)𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀
𝑒∈𝛿(𝑖) 𝜅𝑒, 𝑖 = 𝑗,

−𝜅𝑖𝑗, {𝑖, 𝑗} ∈ ℰ ,

0, {𝑖, 𝑗} /∈ ℰ .

(A.1b)
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𝐿(�̃�𝜌) denotes the connection Laplacian for the rotational measurements, which is a

𝑑𝑛× 𝑑𝑛 symmetric block-diagonal matrix with 𝑑× 𝑑 blocks determined by:

𝐿(�̃�𝜌)𝑖𝑗 ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑑𝜌𝑖 𝐼𝑑, 𝑖 = 𝑗,

−𝜅𝑖𝑗�̃�𝑖𝑗, {𝑖, 𝑗} ∈ ℰ ,

0𝑑×𝑑, {𝑖, 𝑗} /∈ ℰ ,

(A.2a)

𝑑𝜌𝑖 ,
∑︁
𝑒∈𝛿(𝑖)

𝜅𝑒, (A.2b)

where 𝛿(𝑖) denotes the set of edges incident to node 𝑖. 𝑉 ∈ R𝑛×𝑑𝑛 denotes the

(1× 𝑑)-block-structured matrix with (𝑖, 𝑗) block given by:

𝑉𝑖𝑗 ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀
𝑒∈𝛿−(𝑗) 𝜏𝑒𝑡

T
𝑒 , 𝑖 = 𝑗,

−𝜏𝑗𝑖𝑡T𝑗𝑖, (𝑗, 𝑖) ∈ ℰ⃗ ,

01×𝑑, otherwise.

(A.3)

Finally, Σ̃ ∈ SBD(𝑑, 𝑛) denotes the symmetric block-structured diagonal matrix given

by:
Σ̃ , Diag(Σ̃1, . . . , Σ̃𝑛) ∈ SBD(𝑑, 𝑛)

Σ̃𝑖 ,
∑︁

𝑒∈𝛿−(𝑖)

𝜏𝑒𝑡𝑒𝑡
T
𝑒 ,

(A.4)

where 𝛿−(𝑖) denotes the set of edges leaving node 𝑖. With these definitions in hand,

the translational data matrix �̃�𝜏 can be defined as:

�̃�𝜏 = Σ̃− 𝑉 T𝐿(𝑊 𝜏 )†𝑉. (A.5)
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A.2 Analysis of the spectral relaxation

A.2.1 Recovering minimizers of Problem 6 as eigenvectors

In this section we derive a closed-form description of the global minimizers 𝑌 * of the

spectral relaxation Problem 6. Specifically, we prove the following theorem:

Theorem 11 (Global minimizers of the spectral relaxation). Let 𝜆1(�̃�) ≤ · · · ≤

𝜆𝑑(�̃�) be the 𝑑 smallest eigenvalues of �̃�. Then 𝑌 * ∈ R𝑑×𝑑𝑛 is a global minimizer of

the spectral relaxation Problem 6 if and only if

𝑌 * =
√
𝑛

⎛⎜⎜⎜⎝
𝑣𝜎(1)

...

𝑣𝜎(𝑑)

⎞⎟⎟⎟⎠ ∈ R𝑑×𝑑𝑛 (A.6)

where 𝑣1, . . . , 𝑣𝑑 ∈ R𝑑𝑛 are a set of orthonormal eigenvectors corresponding to the 𝑑

smallest eigenvalues, and 𝜎 is a permutation. The corresponding optimal value of

Problem 6 is:

𝑝*𝑆 = 𝑛
𝑑∑︁
𝑖=1

𝜆𝑖(�̃�). (A.7)

Proof. Our approach will be to reduce Problem 6 to an equivalent problem whose

critical points are already well-understood. To that end, let 𝑍 , 𝑛−1/2𝑌 T ∈ R𝑑𝑛×𝑑,

so that 𝑌 =
√
𝑛𝑍T. Substitution into Problem 6 then gives:

𝑝*𝑆 = min
𝑍∈R𝑑𝑛×𝑑

tr
(︁
𝑛�̃�𝑍𝑍T

)︁
s.t. 𝑍T𝑍 = 𝐼𝑑.

(A.8)

Observe that 𝑍T𝑍 = 𝐼𝑑 if and only if 𝑍 ∈ St(𝑑, 𝑑𝑛); therefore, we may in turn rewrite

(A.8) as the following unconstrained minimization over the Stiefel manifold:

𝑝*𝑆 = min
𝑍∈St(𝑑,𝑑𝑛)

tr
(︁
𝑛�̃�𝑍𝑍T

)︁
. (A.9)

Note that we may now recognize (A.9) as the minimization of a generalized Rayleigh
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quotient over a Stiefel manifold. This problem has been extensively studied; in par-

ticular, Absil et al. [2, Section 4.8.2] provides an elementary proof that

𝑍 = (𝑧1, . . . , 𝑧𝑑) ∈ R𝑑𝑛×𝑑 (A.10)

is a critical point of (A.9) if and only if its columns {𝑧𝑖}𝑑𝑖=1 ⊂ R𝑑𝑛 are an orthonor-

mal set of eigenvectors for 𝑛�̃�. Moreover, substituting (A.10) into the objective in

(A.8) and exploiting the fact that {𝑧𝑖}𝑑𝑖=1 ⊂ R𝑑𝑛 are pairwise mutually-orthogonal

eigenvectors, we find that the corresponding objective value is:

tr
(︁
𝑛�̃�𝑍𝑍T

)︁
= 𝑛

𝑑∑︁
𝑖=1

𝜇𝑖, (A.11)

where 𝜇𝑖 is the eigenvalue corresponding to 𝑧𝑖. Since every critical point of (A.9)

is of the form (A.10)–(A.11), it follows that the global minimizers 𝑍* are precisely

those critical points whose columns are composed of the eigenvectors 𝑣1, . . . , 𝑣𝑑 ∈

R𝑑𝑛 corresponding to the 𝑑 smallest eigenvalues of �̃�. Recovering the corresponding

optimal 𝑌 * from 𝑍* then gives (A.6) and (A.7).

A.2.2 Symmetric perturbations of symmetric matrices

Recall that
¯
𝑅 and Φ are solutions of the noiseless and noisy versions of the spectral

relaxation in Problem 6. In Appendix A.2.1 we showed how these can be directly

obtained from the Stiefel manifold elements giving the 𝑑 minimum eigenvectors for

their corresponding data matrices. The Davis-Kahan Theorem is a classical result

in linear algebra that measures the perturbation of a matrix’s eigenvectors under a

symmetric perturbation of that matrix [131]. Therefore, we make use of this theorem

to derive a bound on the estimation error of a spectral estimator as a function of

the noise in the data matrix. In particular, the proof of Lemma 3 (and consequently

Theorem 5) relies on a particular variant of the Davis-Kahan sin 𝜃 Theorem [147,

Theorem 2]. Here, we briefly restate the main result of [147] and give a proof of

Lemma 3.
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Theorem 12 (Yu et al. [147], Theorem 2). Let Σ, Σ̂ ∈ R𝑝×𝑝 be symmetric, with

eigenvalues 𝜆1 ≤ . . . ≤ 𝜆𝑝 and �̂�1 ≤ . . . ≤ �̂�𝑝 respectively. Fix 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑝 and

assume that min(𝜆𝑟 − 𝜆𝑟−1, 𝜆𝑠+1 − 𝜆𝑠) > 0, where 𝜆0 , −∞ and 𝜆𝑝+1 , ∞. Let

𝑑 , 𝑠− 𝑟+ 1, and let 𝑉 = (𝑣𝑟, 𝑣𝑟+1, . . . , 𝑣𝑠) ∈ R𝑝×𝑑 and 𝑉 = (𝑣𝑟, 𝑣𝑟+1, . . . , 𝑣𝑠) ∈ R𝑝×𝑑

have orthonormal columns satisfying Σ𝑣𝑗 = 𝜆𝑗𝑣𝑗 and Σ̂𝑣𝑗 = �̂�𝑗𝑣𝑗 for 𝑗 = 𝑟, 𝑟+1, . . . , 𝑠.

Then there exists an orthogonal matrix 𝐺 ∈ O(𝑑) such that

‖𝑉 𝐺− 𝑉 ‖𝐹 ≤
23/2min(𝑑1/2‖Σ̂− Σ‖𝑜𝑝, ‖Σ̂− Σ‖𝐹 )

min(𝜆𝑟 − 𝜆𝑟−1, 𝜆𝑠+1 − 𝜆𝑠)
. (A.12)

With this result in hand, we are ready to prove Lemma 3.

Proof of Lemma 3. The data matrices �̃� and
¯
𝑄 are symmetric 𝑑𝑛×𝑑𝑛 matrices with

eigenvalues 𝜆1 ≤ . . . ≤ 𝜆𝑑𝑛 and �̃�1 ≤ . . . ≤ �̃�𝑑𝑛, respectively. From Theorem 11

we have that the 𝑑 normalized eigenvectors corresponding to 𝜆1, . . . , 𝜆𝑑 of
¯
𝑄 and

�̃�1, . . . , �̃�𝑑 are exactly 𝑛−1/2

¯
𝑅T and 𝑛−1/2ΦT, respectively. Then, letting 𝑟 = 1 and

𝑠 = 𝑑 and applying Theorem 12, there exists an orthogonal matrix 𝐺 ∈ O(𝑑) such

that:
1√
𝑛
‖ΦT𝐺−

¯
𝑅T‖𝐹 ≤

2
√
2𝑑‖�̃�−

¯
𝑄‖2

𝜆𝑑+1(
¯
𝑄)− 𝜆𝑑(

¯
𝑄)
. (A.13)

Multiplying both sides of this expression by
√
𝑛, we have:

‖ΦT𝐺−
¯
𝑅T‖𝐹 ≤

2
√
2𝑑𝑛‖�̃�−

¯
𝑄‖2

𝜆𝑑+1(
¯
𝑄)− 𝜆𝑑(

¯
𝑄)
. (A.14)

Now, by definition Δ𝑄 = �̃�−
¯
𝑄. If we assume 𝒢 is connected,1 from [118, Lemma 8]

we have that 𝜆𝑑+1(
¯
𝑄) > 0. Since

¯
𝑅 ∈ ker(

¯
𝑄), we know that 𝜆𝑑(

¯
𝑄) = 0 and the above

expression simplifies to:

‖ΦT𝐺−
¯
𝑅T‖𝐹 ≤

2
√
2𝑑𝑛‖Δ𝑄‖2
𝜆𝑑+1(

¯
𝑄)

. (A.15)

Taking the transpose of the terms inside the norm gives the desired result.
1It is not particularly restrictive to assume that 𝒢 is connected. In the case that 𝒢 is not

connected, the estimation problem splits over the connected components of 𝒢, and all of our results
hold separately for each connected component.
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A.3 Proof of the main results

In this appendix, we prove the main results, i.e. Theorem 5, Theorem 6, and Corollary

7.

A.3.1 An upper bound for the estimation error in Problem 6

Proof of Theorem 5. To simplify the subsequent derivation, we will assume without

loss of generality that
¯
𝑅 and Φ are the representatives of their orbits satisfying

𝑑𝒪(
¯
𝑅,Φ) = ‖

¯
𝑅− Φ‖𝐹 . Recall from the definition of 𝑑𝒮(

¯
𝑅,𝑅(0)) that:

𝑑𝒮(
¯
𝑅,𝑅(0)) = min

𝐺∈SO(𝑑)
‖
¯
𝑅−𝐺𝑅(0)‖𝐹 . (A.16)

Therefore, we have:
𝑑𝒮(

¯
𝑅,𝑅(0))2 = min

𝐺∈SO(𝑑)
‖
¯
𝑅−𝐺𝑅(0)‖2𝐹

≤ ‖
¯
𝑅−𝑅(0)‖2𝐹 ,

=
𝑛∑︁
𝑖=1

‖
¯
𝑅𝑖 − Π𝒮(Φ𝑖)‖2𝐹 ,

(A.17)

where in the last line we have used the fact that 𝑅(0) consists of the projections of

individual (𝑑× 𝑑) blocks of Φ onto SO(𝑑). From Lemma 4, we have that each of the

𝑛 summands above satisfies:

‖
¯
𝑅𝑖 − Π𝒮(Φ𝑖)‖2𝐹 ≤ 4‖

¯
𝑅𝑖 − Φ𝑖‖2𝐹 . (A.18)

This, in turn, gives a corresponding bound on the summation:

𝑛∑︁
𝑖=1

‖
¯
𝑅𝑖 − Π𝒮(Φ𝑖)‖2𝐹 ≤ 4

𝑛∑︁
𝑖=1

‖
¯
𝑅𝑖 − Φ𝑖‖2𝐹

= 4‖
¯
𝑅− Φ‖2𝐹 .

(A.19)

130



Since, by hypothesis, Φ and
¯
𝑅 are representatives of their orbits satisfying 𝑑𝒪(

¯
𝑅,Φ) =

‖
¯
𝑅− Φ‖𝐹 , we have:

4‖
¯
𝑅− Φ‖2𝐹 = 4𝑑𝒪 (

¯
𝑅,Φ)2 . (A.20)

Applying Lemma 3, we directly obtain:

4𝑑𝒪 (
¯
𝑅,Φ)2 ≤ 4(2

√
2𝑑𝑛)2

‖Δ𝑄‖22
𝜆𝑑+1(

¯
𝑄)2

. (A.21)

In summary, we have:

𝑑𝒮(
¯
𝑅,𝑅(0))2 ≤ 4(2

√
2𝑑𝑛)2

‖Δ𝑄‖22
𝜆𝑑+1(

¯
𝑄)2

. (A.22)

Taking the square root of both sides of the inequality in the last line gives:

𝑑𝒮(
¯
𝑅,𝑅(0)) ≤ 4

√
2𝑑𝑛‖Δ𝑄‖2
𝜆𝑑+1(

¯
𝑄)

, (A.23)

which concludes the proof.

A.3.2 An upper bound for the estimation error in Problem 5

We begin following the arguments of Preskitt [110, Appendix D.4]. From the opti-

mality of 𝑅* we have:

tr(�̃�
¯
𝑅T

¯
𝑅) = tr(

¯
𝑄
¯
𝑅T

¯
𝑅) + tr(Δ𝑄

¯
𝑅T

¯
𝑅)

≥ tr(
¯
𝑄𝑅*T𝑅*) + tr(Δ𝑄𝑅*T𝑅*) = tr(�̃�𝑅*T𝑅*).

(A.24)

Since tr(
¯
𝑄
¯
𝑅T

¯
𝑅) = 0, we can rearrange the above expression to obtain:

tr(
¯
𝑄𝑅*T𝑅*) ≤ tr(Δ𝑄

¯
𝑅T

¯
𝑅)− tr(Δ𝑄𝑅*T𝑅*). (A.25)
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Using the fact that tr(Δ𝑄
¯
𝑅T

¯
𝑅) = vec(

¯
𝑅)T(Δ𝑄⊗𝐼𝑛) vec(

¯
𝑅) (and likewise for tr(Δ𝑄𝑅*T𝑅*)),

we have:

tr(
¯
𝑄𝑅*T𝑅*) ≤ vec(

¯
𝑅−𝑅*)T(Δ𝑄⊗ 𝐼𝑛) vec(

¯
𝑅 +𝑅*)

≤ ‖ vec(
¯
𝑅−𝑅*)‖2‖Δ𝑄⊗ 𝐼𝑛‖2‖ vec(

¯
𝑅 +𝑅*)‖2

= ‖
¯
𝑅−𝑅*‖𝐹‖Δ𝑄‖2‖

¯
𝑅 +𝑅*‖𝐹

≤ 2
√
𝑑𝑛‖

¯
𝑅−𝑅*‖𝐹‖Δ𝑄‖2.

(A.26)

In order to lower-bound the right-hand side of (A.26) in terms of the estimation error

𝑑𝒮(
¯
𝑅,𝑅*), we will make use of the following technical lemma of Rosen et al. [118]:

Lemma 13 (Lemma 11 of Rosen et al. [118]). Let 𝑅 ∈ O(𝑑)𝑛 ⊂ R𝑑×𝑑𝑛 and further-

more let 𝑀 = {𝑊𝑅 | 𝑊 ∈ R𝑑×𝑑} ⊂ R𝑑×𝑑𝑛 be the subspace of matrices with rows

contained in image(𝑅T). Then

Proj𝑉 : R𝑑𝑛 → image(𝑅T)

Proj𝑉 (𝑥) =
1

𝑛
𝑅T𝑅𝑥

(A.27)

is the orthogonal projection onto image(𝑅T) with respect to the ℓ2 inner product, and

the map
Proj𝑀 : R𝑑×𝑑𝑛 →𝑀

Proj𝑀(𝑋) =
1

𝑛
𝑋𝑅T𝑅

(A.28)

which applies Proj𝑉 to the rows of 𝑋 is the orthogonal projection onto 𝑀 with respect

to the Frobenius inner product.

Since ker(
¯
𝑄) = image(

¯
𝑅T) and dim(image(

¯
𝑅T)) = 𝑑, from Lemma 13, we have:

tr(
¯
𝑄𝑅*T𝑅*) ≥ 𝜆𝑑+1(

¯
𝑄)‖𝑃‖2𝐹 , (A.29)
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where
𝑅* = 𝐾 + 𝑃

𝐾 = Proj𝑀(𝑅*) =
1

𝑛
𝑅*

¯
𝑅T

¯
𝑅

𝑃 = 𝑅* − Proj𝑀(𝑅*) = 𝑅* − 1

𝑛
𝑅*

¯
𝑅T

¯
𝑅

(A.30)

is an orthogonal decomposition of 𝑅* and the rows of 𝑃 are contained in the

orthogonal complement of image(
¯
𝑅T)

The following lemma provides a bound on 𝑑𝒮(
¯
𝑅,𝑅*)2 in terms of ‖𝑃‖2𝐹 .

Lemma 14. Let 𝑅* and
¯
𝑅 be representatives of their orbits such that 𝑑𝒮(

¯
𝑅,𝑅*) =

‖
¯
𝑅−𝑅*‖𝐹 , and 𝑃 = 𝑅* − Proj𝑀(𝑅*) as defined in (A.30). Then:

1

4
𝑑𝒮(

¯
𝑅,𝑅*)2 ≤ ‖𝑃‖2𝐹 . (A.31)

Proof. Let 𝑋 = 1
𝑛 ¯
𝑅𝑅*T, so that 𝐾 = 𝑋T

¯
𝑅. Expanding the left hand side, we have:

𝑑𝒮(
¯
𝑅,𝑅*)2 = ‖𝑅* −

¯
𝑅‖2𝐹

≤ ‖𝑅* − Π𝒮(𝑋
T)
¯
𝑅‖2𝐹 ,

(A.32)

from the fact that the orbit distance is obtained as the minimum over 𝐺 ∈ SO(𝑑) of

the quantity ‖𝑅*−𝐺
¯
𝑅‖𝐹 , and that by hypothesis this minimum is obtained as ‖𝑅*−

¯
𝑅‖𝐹 . Breaking up the norm into its blockwise summands, and from the orthogonal

invariance of the Frobenius norm, we can rearrange this expression as follows:

‖𝑅* − Π𝒮(𝑋
T)
¯
𝑅‖2𝐹 =

∑︁
𝑖=1

‖𝑅*
𝑖 − Π𝒮(𝑋

T)
¯
𝑅𝑖‖2𝐹

=
𝑛∑︁
𝑖=1

‖𝑅*
𝑖 ¯
𝑅T
𝑖 − Π𝒮(𝑋

T)‖2𝐹 .
(A.33)

From Lemma 4, we know that each summand in the above expression satisfies

‖𝑅*
𝑖 ¯
𝑅T
𝑖 − Π𝒮(𝑋

T)‖2𝐹 ≤ 4‖𝑅*
𝑖 ¯
𝑅T
𝑖 −𝑋T‖2𝐹 . (A.34)
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Since this bound is satisfied for each summand, the total summation satisfies

𝑛∑︁
𝑖=1

‖𝑅*
𝑖 ¯
𝑅T
𝑖 − Π𝒮(𝑋

T)‖2𝐹 ≤ 4
𝑛∑︁
𝑖=1

‖𝑅*
𝑖 ¯
𝑅T
𝑖 −𝑋T‖2𝐹

= 4
𝑛∑︁
𝑖=1

‖𝑅*
𝑖 −𝑋T

¯
𝑅𝑖‖2𝐹

= 4‖𝑅* −𝑋T

¯
𝑅‖2𝐹 .

(A.35)

Since 𝐾 = 𝑋T

¯
𝑅, we have:

4‖𝑅* −𝑋T

¯
𝑅‖2𝐹 = 4‖𝑅* −𝐾‖2𝐹

= 4‖𝑃‖2𝐹 ,
(A.36)

which gives the desired bound.

With this result, we are ready to prove Theorem 6.

Proof. From (A.29) and (A.26), we have:

𝜆𝑑+1(
¯
𝑄)‖𝑃‖2𝐹 ≤ 2

√
𝑑𝑛‖

¯
𝑅−𝑅*‖𝐹‖Δ𝑄‖2. (A.37)

Since, by hypothesis, 𝑅* and
¯
𝑅 are the representatives of their orbits satisfying

𝑑𝒮(
¯
𝑅,𝑅*) = ‖

¯
𝑅−𝑅*‖𝐹 , from Lemma 14 we have

𝑑𝒮(
¯
𝑅,𝑅*)2 ≤ 4‖𝑃‖2𝐹 . (A.38)

Combining (A.38) with (A.37), we obtain:

𝑑𝒮(
¯
𝑅,𝑅*) ≤ 8

√
𝑑𝑛‖Δ𝑄‖2
𝜆𝑑+1(

¯
𝑄)

, (A.39)

which is what we intended to show.
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A.3.3 An upper bound on 𝑑𝒮(𝑅
(0), 𝑅*)

In this section, we give a proof of Corollary 7, bounding the SO(𝑑)𝑛 orbit distance

between the spectral initialization 𝑅(0) and the maximum likelihood estimate 𝑅*.

First, we establish as the main technical lemma a result that the orbit distances 𝑑𝒮

and 𝑑𝒪 on SO(𝑑)𝑛 and O(𝑑)𝑛 are pseudometrics :

Lemma 15 (Orbit distances are pseudometrics). The orbit distances 𝑑𝒮 and 𝑑𝒪 are

pseudometrics on SO(𝑑)𝑛 and O(𝑑)𝑛, respectively. In particular, for all 𝑋, 𝑌, 𝑍 ∈

SO(𝑑)𝑛, we have:

1. 𝑑𝒮(𝑋,𝑋) = 0

2. 𝑑𝒮(𝑋, 𝑌 ) = 𝑑𝒮(𝑌,𝑋)

3. 𝑑𝒮(𝑋,𝑍) ≤ 𝑑𝒮(𝑋, 𝑌 ) + 𝑑𝒮(𝑌, 𝑍),

and likewise for 𝑑𝒪 on O(𝑑)𝑛.

Proof. To simplify the subsequent derivation, we prove the result for the orbit distance

𝑑𝒮 on SO(𝑑)𝑛; the same argument applies mutatis mutandis to 𝑑𝒪 on O(𝑑)𝑛. A

pseudometric on SO(𝑑)𝑛 (resp. O(𝑑)𝑛) is any nonnegative function SO(𝑑)𝑛×SO(𝑑)𝑛 →

R≥0 satisfying the properties 1–3 [71]. To establish 1, we have:

𝑑𝒮(𝑋,𝑋) = min
𝐺∈SO(𝑑)

‖𝑋 −𝐺𝑋‖𝐹 = 0, (A.40)

since ‖𝐴‖𝐹 ≥ 0 for all 𝐴 and taking 𝐺 = 𝐼 realizes this minimum value.

For 2, we have:

𝑑𝒮(𝑋, 𝑌 ) = min
𝐺∈SO(𝑑)

‖𝑋 −𝐺𝑌 ‖𝐹

= min
𝐺∈SO(𝑑)

‖𝑌 −𝐺T𝑋‖𝐹 = 𝑑𝒮(𝑌,𝑋),
(A.41)

where the second line follows from the orthogonal invariance of the Frobenius norm,

and the last line follows from the fact that since 𝐺T = 𝐺−1 ∈ SO(𝑑), then 𝐺T ranges

over all of SO(𝑑) as 𝐺 does.
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Finally, to establish 3, we aim to prove that for any 𝑋, 𝑌, 𝑍 ∈ SO(𝑑)𝑛:

𝑑𝒮(𝑋,𝑍) ≤ 𝑑𝒮(𝑋, 𝑌 ) + 𝑑𝒮(𝑌, 𝑍). (A.42)

Suppose the orbit distance 𝑑𝒮(𝑋, 𝑌 ) is attained with minimizer 𝐺*
𝑋𝑌 ∈ SO(𝑑) and

likewise the distance 𝑑𝒮(𝑌, 𝑍) is attained with minimizer 𝐺*
𝑌 𝑍 ∈ SO(𝑑). Define:

𝐺′ , 𝐺*
𝑋𝑌𝐺

*
𝑌 𝑍 . (A.43)

Now, since 𝐺′ is itself the product of two elements of SO(𝑑), we know 𝐺′ ∈ SO(𝑑),

and therefore:

𝑑𝒮(𝑋,𝑍) = min
𝐺∈SO(𝑑)

‖𝑋 −𝐺𝑍‖𝐹 ≤ ‖𝑋 −𝐺′𝑍‖𝐹 . (A.44)

Examining the right-hand side of this expression, we have:

‖𝑋 −𝐺′𝑍‖𝐹 = ‖𝑋 −𝐺*
𝑋𝑌 𝑌 +𝐺*

𝑋𝑌 𝑌 −𝐺′𝑍‖𝐹

≤ ‖𝑋 −𝐺*
𝑋𝑌 𝑌 ‖𝐹⏟  ⏞  

𝑑𝒮(𝑋,𝑌 )

+‖𝐺*
𝑋𝑌 𝑌 −𝐺′𝑍‖𝐹 , (A.45)

where the last line follows from the triangle inequality for the Frobenius norm. Now,

substitution of the definition (A.43) into the second term of (A.45) reveals:

‖𝐺*
𝑋𝑌 𝑌 −𝐺′𝑍‖𝐹 = ‖𝐺*

𝑋𝑌 𝑌 −𝐺*
𝑋𝑌𝐺

*
𝑌 𝑍𝑍‖𝐹

= ‖𝑌 −𝐺*
𝑌 𝑍𝑍‖𝐹

= 𝑑𝒮(𝑌, 𝑍),

(A.46)

where the second line follows from the orthogonal invariance of the Frobenius norm.

Taken together, these results give:

𝑑𝒮(𝑋,𝑍) ≤ ‖𝑋 −𝐺′𝑍‖𝐹 ≤ 𝑑𝒮(𝑋, 𝑌 ) + 𝑑𝒮(𝑌, 𝑍), (A.47)

which is what we intended to show.
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Lemma 15 suggests a straightforward proof of Corollary 7.

Proof. From the triangle inequality for 𝑑𝒮 , we have:

𝑑𝒮(𝑅
(0), 𝑅*) ≤ 𝑑𝒮(

¯
𝑅,𝑅(0)) + 𝑑𝒮(

¯
𝑅,𝑅*). (A.48)

Substitution of (5.17) and (5.18) into (A.48) gives the desired result.

A.4 Relationship to the method of Moreira et al. [95]

In their recent work, Moreira et al. [95] also propose an estimator for pose-graph

SLAM problems based on eigenvector computations. In this section, we show that

their approach is formally equivalent to the rotation-only variant of the spectral ini-

tialization we discuss in Section 5.3 and therefore has estimation error satisfying

the bound (5.21). Moreira et al. [95] specifically consider unweighted rotation mea-

surements, which (from an estimation standpoint) is equivalent to considering the

generative model (5.1) with identical precisions (say 𝜅𝑖𝑗 = 1) for all edges (𝑖, 𝑗) ∈ ℰ .

Their construction begins by considering the matrix �̃� ∈ R𝑑𝑛×𝑑𝑛 with 𝑑×𝑑 block

𝑖, 𝑗 given by:

�̃�𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐼𝑑 if 𝑖 = 𝑗

�̃�𝑖𝑗, {𝑖, 𝑗} ∈ ℰ

0𝑑×𝑑 {𝑖, 𝑗} /∈ ℰ .

(A.49)

They observe that for all stationary points �̂� ∈ SO(𝑑)𝑛 ⊂ R𝑑×𝑑𝑛, there is a corre-

sponding matrix Λ ∈ R𝑑𝑛×𝑑𝑛 such that:

(Λ− �̃�)⏟  ⏞  
𝑆

�̂�T = 0, (A.50)
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where Λ has the symmetric 𝑑× 𝑑 block diagonal structure:

Λ =

⎡⎢⎢⎢⎣
Λ1 · · · 0
... . . . ...

0 · · · Λ𝑛

⎤⎥⎥⎥⎦ . (A.51)

In the noiseless case where �̃� =
¯
𝑀 ,2 the matrix

¯
𝑆 = Λ−

¯
𝑀 is given by [95, Equation

14]:

¯
𝑆 = (ℒ ⊗ 𝐽𝑑) ∘

¯
𝑀, (A.52)

where ℒ is the scalar (unweighted) rotational graph Laplacian with 𝑖, 𝑗 entry:

ℒ𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿(𝑖), 𝑖 = 𝑗,

−1, {𝑖, 𝑗} ∈ ℰ ,

0, {𝑖, 𝑗} /∈ ℰ ,

(A.53)

𝐽𝑑 ∈ R𝑑×𝑑 is an all-ones matrix, and ∘ denotes the Hadamard product. Direct com-

parison of (A.53) with (A.1b) reveals that ℒ is equivalent to 𝐿(𝑊 𝜌) when 𝜅𝑖𝑗 = 1 for

all {𝑖, 𝑗} ∈ ℰ . Expanding (A.52), we have:

¯
𝑆𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿(𝑖)𝐼𝑑, 𝑖 = 𝑗,

−
¯
𝑅𝑖𝑗, {𝑖, 𝑗} ∈ ℰ ,

0𝑑×𝑑, {𝑖, 𝑗} /∈ ℰ

. (A.54)

Comparing the definition of 𝐿(�̃�𝜌) in (A.2a) and
¯
𝑆 in (A.54), it is straightforward to

verify that
¯
𝑆 = 𝐿(

¯
𝐺𝜌) when 𝜅𝑖𝑗 = 1. From the equivalence of

¯
𝑆 and 𝐿(

¯
𝐺𝜌), it follows

that
¯
𝑆 ⪰ 0 and

¯
𝑅T ∈ ker(

¯
𝑆), so the ground-truth rotations

¯
𝑅 can be recovered by

computing the 𝑑 eigenvectors of
¯
𝑆 corresponding to the smallest eigenvalues of

¯
𝑆.3

2In keeping with the notation in the rest of this manuscript, we use the notation
¯
𝑀 to denote

the measurement matrix (A.49) constructed from the ground-truth relative rotations
¯
𝑅𝑖𝑗 .

3Recall from Section 5.2 that
¯
𝑅 lie in ker(𝐿(

¯
𝐺𝜌)) and from Section 5.1 that 𝐿(

¯
𝐺𝜌) ⪰ 0. The

claim then follows from the equivalence of
¯
𝑆 and 𝐿(

¯
𝐺𝜌).
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In the case of noisy measurements, Moreira et al. [95] propose to compute, as an

approximation, the eigenvectors of 𝑆 = (ℒ ⊗ 𝐽3) ∘ �̃� , which has 𝑑 × 𝑑 blocks given

by:

𝑆𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿(𝑖)𝐼𝑑, 𝑖 = 𝑗,

−�̃�𝑖𝑗, {𝑖, 𝑗} ∈ ℰ ,

0𝑑×𝑑, {𝑖, 𝑗} /∈ ℰ .

(A.55)

The justification given for this approximation is that, in the high signal-to-noise ratio

regime, there ought to exist 𝑅 ∈ SO(𝑑)𝑛 such that 𝑆𝑅 ≈ 0. Once again, however,

directly comparing definitions reveals that the quantity (ℒ ⊗ 𝐽3) ∘ �̃� is identical to

𝐿(�̃�𝜌) with 𝜅𝑖𝑗 = 1 (cf. equations (A.55) and (A.2a)). Consequently, Moreira et al.

[95]’s method is actually a particular instance of the spectral estimator we propose in

Section 5.2, corresponding to the special case in which all rotational measurements

have equal weights and the translational measurements have been discarded (i.e. the

rotation-only case discussed in Section 5.3). Moreover, viewing this approach through

the lens of the spectral relaxation in Problem 6 provides formal justification for the

method and allows us to derive the explicit performance guarantees given in this

thesis.
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Appendix B

Proofs for Chapter 6

B.1 Subgradients of the Fiedler value

In this appendix we consider the problem of computing a supergradient of 𝐹 (𝜔) =

𝜆2(𝐿(𝑊
𝜌)(𝜔)) with respect to 𝜔. Strictly speaking, 𝐹 need not be differentiable at a

particular 𝜔 (which occurs specifically when 𝜆2(𝐿(𝑊 𝜌)(𝜔)) appears with multiplicity

greater than 1, i.e. it is not a simple eigenvalue). We say that a vector 𝑔 ∈ R𝑚 is a

supergradient of a concave function 𝐹 at 𝜔 if, for all 𝑦, 𝑥 in the domain of 𝐹 :

𝐹 (𝑦)− 𝐹 (𝑥) ≤ 𝑔T(𝑦 − 𝑥). (B.1)

Equation (B.1) generalizes the notion of differentiability to the scenario where the

function 𝐹 may not be (uniquely) differentiable a particular point. We call the set of

all supergradients at a particular value of 𝜔 the superdifferential of 𝐹 at 𝜔, denoted

𝜕𝐹 (𝜔) [116].

We aim to prove the statement that ∇𝐹 (𝜔) as defined in equation (6.5) is a

supergradient of 𝐹 at 𝜔.

Proof of Theorem 9. We aim to prove the claim by way of equation (B.1). Let 𝑢, 𝑣 ∈

R𝑚, ‖𝑢‖2 = ‖𝑣‖2 = 1 be any normalized eigenvectors of 𝐿(𝑊 𝜌)(𝑥) and 𝐿(𝑊 𝜌)(𝑦)

with corresponding eigenvalues 𝜆2(𝐿(𝑊 𝜌)(𝑥)) and 𝜆2(𝐿(𝑊
𝜌)(𝑦)), respectively. By

definition, then, 𝑢 and 𝑣 are Fiedler vectors of 𝐿(𝑊 𝜌)(𝑥) and 𝐿(𝑊 𝜌)(𝑦), respectively.
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Then the left-hand side of equation (B.1) can be written as:

𝐹 (𝑦)− 𝐹 (𝑥) = 𝜆2(𝐿(𝑊
𝜌)(𝑦))− 𝜆2(𝐿(𝑊 𝜌)(𝑥))

= 𝑣T𝐿(𝑊 𝜌)(𝑦)𝑣 − 𝑢T𝐿(𝑊 𝜌)(𝑥)𝑢.
(B.2)

Now, substitution of 𝑢 for the Fiedler vector into the definition in (6.5), reveals that

the 𝑘-th element of ∇𝐹 (𝑥) is:

∇𝐹 (𝑥)𝑘 = 𝑢T𝐿𝑐𝑘𝑢. (B.3)

In turn, the right-hand side of (B.1) can be written as:

∇𝐹 (𝑥)T(𝑦 − 𝑥) =
𝑚∑︁
𝑘=1

(𝑦𝑘 − 𝑥𝑘)𝑢T𝐿𝑐𝑘𝑢. (B.4)

Since 𝑢 and 𝑣 are minimizers of their respective Rayleigh quotient minimization

problems, we know:

𝑣T𝐿(𝑊 𝜌)(𝑦)𝑣 ≤ 𝑢T𝐿(𝑊 𝜌)(𝑦)𝑢

= 𝑢T𝐿𝑜𝑢+
𝑚∑︁
𝑘=1

𝑦𝑘𝑢
T𝐿𝑐𝑘𝑢,

(B.5)

where the first line follows from the optimality of 𝑣 with respect to the Rayleigh

quotient for 𝐿(𝑊 𝜌)(𝑦) and the second line follows from the definition of 𝐿(𝑊 𝜌)(𝑦).

Consider “adding zero” to each 𝑦𝑘 in (B.5) as 𝑥𝑘−𝑥𝑘 to obtain an equivalent expression:

𝑚∑︁
𝑘=1

𝑦𝑘𝑢
T𝐿𝑐𝑘𝑢 =

𝑚∑︁
𝑘=1

(𝑦𝑘 + 𝑥𝑘 − 𝑥𝑘)𝑢T𝐿𝑐𝑘𝑢,

=
𝑚∑︁
𝑘=1

𝑥𝑘𝑢
T𝐿𝑐𝑘𝑢+

𝑚∑︁
𝑘=1

(𝑦𝑘 − 𝑥𝑘)𝑢T𝐿𝑐𝑘𝑢.
(B.6)

Comparison to (B.4) reveals that the last term in (B.6) is exactly equal to∇𝐹 (𝑥)T(𝑦−
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𝑥). In turn, substitution of (B.4) into (B.6) gives:

𝑚∑︁
𝑘=1

𝑦𝑘𝑢
T𝐿𝑐𝑘𝑢 =

𝑚∑︁
𝑘=1

𝑥𝑘𝑢
T𝐿𝑐𝑘𝑢+∇𝐹 (𝑥)T(𝑦 − 𝑥). (B.7)

Substitution back into (B.5) gives the bound:

𝑣T𝐿(𝑊 𝜌)(𝑦)𝑣 ≤ 𝑢T𝐿𝑜𝑢+
𝑚∑︁
𝑘=1

𝑥𝑘𝑢
T𝐿𝑐𝑘𝑢+∇𝐹 (𝑥)T(𝑦 − 𝑥). (B.8)

Finally, from the definition of 𝐿(𝑊 𝜌)(𝑥), we obtain

𝑣T𝐿(𝑊 𝜌)(𝑦)𝑣 ≤ 𝑢T𝐿(𝑊 𝜌)(𝑥)𝑢+∇𝐹 (𝑥)T(𝑦 − 𝑥). (B.9)

Subtracting 𝑢T𝐿(𝑊 𝜌)(𝑥)𝑢 from both sides and substituting into (B.2) gives the de-

sired result.

B.2 Solving the direction-finding subproblem

This appendix aims to prove the claim that (6.6) provides an optimal solution to the

linear program in Problem 9.

Proof of Theorem 10. Rewriting the objective from Problem 9 in terms of the ele-

ments of 𝑠 and ∇𝐹 (𝜔), we have:

𝑠T∇𝐹 (𝜔) =
𝑚∑︁
𝑘=1

𝑠𝑘∇𝐹 (𝜔)𝑘

=
𝑚∑︁
𝑘=1

𝑠𝑘𝑦
*(𝜔)T𝐿𝑐𝑘𝑦

*(𝜔),

(B.10)

where in the last line we have used the definition of ∇𝐹 (𝜔)𝑘 in (6.5). Now, since

each 𝐿𝑐𝑘 ⪰ 0, every component of the gradient must always be nonnegative, i.e.

∇𝐹 (𝜔)𝑘 ≥ 0. Further, since 0 ≤ 𝑠𝑘 ≤ 1, the objective in (B.10) is itself a sum

of nonnegative terms. From this, it follows directly that the objective in (B.10) is

maximized (subject to the constraint that
∑︀𝑚

𝑘=1 𝑠𝑘 = 𝐾) specifically by selecting (i.e.

143



by setting 𝑠𝑘 = 1) each of the 𝐾 largest components of ∇𝐹 (𝜔), giving the result in

(6.6).
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