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Abstract

Simultaneous localization and mapping (SLAM) is the process by which a robot
constructs a global model of an environment from local observations of it; this is a
fundamental perceptual capability supporting planning, navigation, and control. We
are interested in improving the expressiveness and operational longevity of SLAM sys-
tems. In particular, we are interested in leveraging state-of-the-art machine learning
methods for object detection to augment the maps robots can build with object-level
semantic information. To do so, a robot must combine continuous geometric infor-
mation about its trajectory and object locations with discrete semantic information
about object classes. This problem is complicated by the fact that object detection
techniques are often unreliable in novel environments, introducing outliers and mak-
ing it difficult to determine the correspondence between detected objects and mapped
landmarks. For robust long-term navigation, a robot must contend with these dis-
crete sources of ambiguity. Finally, even when measurements are not corrupted by
outliers, long-term SLAM remains a challenging computational problem: typical solu-
tion methods rely on local optimization techniques that require a good “initial guess,”
and whose computational expense grows as measurements accumulate.

The first contribution of this thesis addresses the problem of inference for hybrid
probabilistic models, i.e., models containing both discrete and continuous states we
would like to estimate. These problems frequently arise when modeling e.g., outlier
contamination (where binary variables indicate whether a measurement is corrupted),
or when performing object-level mapping (where discrete variables may represent
measurement-landmark correspondence or object categories). The former applica-
tion is crucial for designing more robust perception systems. The latter application
is especially important for enabling robots to construct semantic maps; that is, maps
containing objects whose states are a mixture of continuous (geometric) information
and (discrete) categorical information (such as class labels). The second contribution
of this thesis is, a novel spectral initialization method which is efficient to compute,
easy to implement, and admits the first formal performance guarantees for a SLAM
initialization method. The final contribution of this thesis aims to curtail the grow-
ing computational expense of long-term SLAM. In particular, we propose an efficient
algorithm for graph sparsification capable of reducing the computational burden of



SLAM methods without significantly degrading SLAM solution quality. Taken to-
gether, these contributions improve the robustness and efficiency of robot perception
approaches in the lifelong setting.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Motivation

Imagine a robot traveling deep under the ocean, or even on another planet. As it
wanders, it may observe flora or fauna, or perhaps extraterrestrial geology. Most of
the data it collects may not be scientifically interesting, but suppose after a few hours
of deployment, it notices something surprising. Immediately, the robot communicates
to scientists — maybe they are located topside on a boat, or thousands of miles away
on Earth. Because of communication delays, it may be a few seconds or a few minutes
before the data makes it to a scientific expert. By the time a scientist can send back
a command to revisit the point where the observation was made, our robot could be
far away! In order to return and sample the region (i.e. reacquire the target), the
robot must store an internal map of its environment and maintain some notion of its
own location within that map. Furthermore, we should expect that the quality of
this map must be good enough that we can guarantee that using this map, our robot
has a reasonable chance of making it back to the correct location.

Now, consider the same robot, but rather than operating for minutes or hours,
it can operate for days, weeks, or months at a time without the need for direct
intervention, instead only intermittently communicating interesting observations to
a scientist elsewhere. Indeed, such resident systems represent a major component of

the modern vision for the future of underwater autonomous vehicles. In this setting,

15



we ask: “what capabilities would this robot need in order to perform its primary
task?” What does this robot’s internal representation of the world “look like?” For
example, how can we encode the types of semantically relevant concepts into our
robot’s representation that would be important to a scientific operator? Moreover, in
this regime, it may no longer be straightforward to guarantee that our robot can return
to locations flagged by an operator with high probability. Even in the situation where
the phenomenon of interest is static (i.e. unchanging in time), it may take days for
the robot to return to its previous location, and, without a good map, accumulating
positional error in the process. The key to addressing this problem is understanding
which properties of the measurements collected by a robot influence its positional

error, and ensure that our robot takes actions that ensure high-quality localization.

We envision a scenario in which an underwater autonomous vehicle is tasked with
exploring and persistently monitoring an a prior: unknown environment. We assume
the environment to be sparsely populated with a set of objects (natural or man-made),
such that the semantic class or category of these objects (or some subset thereof)
is known, and therefore that the system may be equipped with a detection model
capable, at least in a noisy sense, of locating and classifying some of these objects.
The system is tasked with keeping track of these semantic landmarks, and, due to
bandwidth constraints, it is limited to performing onboard computations (in real-
time) and, at best, transferring a compact summary of its observations to a topside
vessel. The straightforward principal goal of this robot is to build an accurate map
(and localize itself within this map) over an extended period of observation. To do
so, it must reason online about errors in its detection model and misattribution of
object measurements to previously mapped landmarks as well as what to remember
and what to forget in order to ensure reasonably bounded time and memory during

operation.
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1.2 Contributions

This thesis addresses the problem of developing expressive representations and al-
gorithms that enable robust, efficient long-term mapping and localization. From a
representational standpoint, we propose new computational tools and algorithms for
inference in hybrid probabilistic models; i.e. models where a subset of variables of
interest are continuous and others are discrete, taking on values from a finite set. In
turn, we develop new models, leveraging these techniques, for capturing both uncer-
tainty in object class predictions of learned perception methods and ambiguity about
measurement-object correspondence within a navigational framework. From an algo-
rithmic standpoint, we consider two issues: First, we consider the issue of bounding
the error of solutions to the specific problem of pose-graph SLAM. In so doing, we
present the first initialization technique for pose-graph SLAM that provably achieves
bounded error. Finally, we consider the issue of graph sparsification, presenting an
algorithm based on maximizing algebraic connectivity capable of producing parsimo-
nious graphs that retain the quality of SLAM estimates.

The key contributions of this thesis are four-fold:

1. We develop DC-SAM, a library permitting straightforward representation and
local optimization of hybrid factor graphs. DC-SAM extends existing tools for
nonlinear least-squares optimization in the setting of SLAM by allowing for op-
timization in hybrid, discrete-continuous models. This extension is crucial for
representing and solving problems with both continuous and discrete states of
interest, arising commonly in robot perception, controls, and planning applica-
tions. We develop a local optimization technique that leverages the conditional
independence structure present in a hybrid factor graph model to perform ef-
ficient inference. We show experimentally in several examples motivated by
robot perception applications that DC-SAM is expressive and performant, en-
abling representation of rich hybrid probabilistic models for data association
and outlier rejection (taken as two particular relevant problem instances), and

providing fast, accurate solutions in practice.
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2. We develop a novel semantic SLAM approach, taking into consideration uncer-
tainty and ambiguity. The hybrid factor graph representations supported by
our work with DC-SAM allow us to develop a probabilistic model considering
jointly the uncertainty in classifications provided by a learning-based percep-
tion model (in our case, an object detector), as well as the ambiguity in data
association. Our model seamlessly couples semantic and geometric information
in a coupled manner without additional specialized techniques. Inference is
achieved, in real-time for many practical scenarios, by making use of the lo-
cal optimization procedure in DC-SAM. We establish new connections between
different representations for ambiguous measurement-landmark correspondence
through the lens of variable elimination in factor graphs. We experimentally
demonstrate the practical advantages of different representational choices for
ambiguity in this setting, providing results on real data from the MIT RACE-
CAR platform as well as through the use of benchmark stereo visual navigation

data from the KITTI dataset.

3. We address the lack of performance guarantees for initialization techniques and
solutions to the SLAM problem. We describe a spectral initialization technique
which we show admits the first formal performance guarantees for a pose-graph
SLAM initialization method. Our analysis links the performance of estimators

for pose-graph SLAM to key spectral graph theoretic properties of pose graphs.

4. We develop MAC, an algorithm for graph sparsification based on mazimizing
algebraic connectivity. MAC is simple and computationally inexpensive, and
admits formal post hoc performance guarantees on the quality of the solutions
it provides. In experiments on benchmark pose-graph SLAM datasets, we show
that our approach quickly produces high-quality sparsification results which
retain the connectivity of the graph and, in turn, the quality of corresponding
SLAM solutions, as compared to a baseline approach which does not consider

graph connectivity.
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1.2.1 Publications

The content of Chapter [3| originally appeared in: Kevin J Doherty, Ziqi Lu, Kurran
Singh, and John J Leonard. Discrete-Continuous Smoothing and Mapping. [EEFE
Robotics and Automation Letters, October 2022 [47]|. Chapter [4]is based on a refined
mathematical treatment of the ideas and algorithms originally presented in: Kevin
Doherty, David Baxter, Edward Schneeweiss, and John J. Leonard. Probabilistic
data association via mixture models for robust semantic SLAM. In I[EEE Intl. Conf.
on Robotics and Automation (ICRA), 2020 [46]. Chapter |5| was originally presented
in: Kevin J Doherty, David M Rosen, and John J Leonard. Performance Guarantees
for Spectral Initialization in Rotation Averaging and Pose-Graph SLAM. In [FEE
Intl. Conf. on Robotics and Automation (ICRA), 2022 [48]. Finally, Chapter [f]
initially appeared in: Kevin J Doherty, David M Rosen, and John J Leonard. Spectral
Measurement Sparsification for Pose-Graph SLAM. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2022 [49].

1.3 Overview

The remainder of this thesis is organized as follows: Chapter [2| provides relevant
preliminaries and background on two- and three-dimensional geometry, graph theory,
probability and statistics (including maximum a posteriori estimation as it pertains
to SLAM), and an overview of related work.

Chapter [3]introduces the DC-SAM library and optimization methods for inference
in hybrid factor graphs. Building off of DC-SAM as a natural tool for synthesizing
the output of learned object detection and classification models with geometric mea-
surements for estimation, Chapter {4 develops our approach to robust object-level
semantic SLAM which accounts for uncertainty in semantic predictions as well as
ambiguity in measurement-landmark correspondences.

In Chapter [5, we focus attention on a restricted subset of SLAM problems, namely
pose-graph SLAM, and consider the issue of bounding the estimation error of SLAM

solutions. In particular, we ask whether it is possible to produce an initial guess in
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some manner which achieves provably bounded estimation error and bounded devi-
ation from the globally optimal estimate. We show that indeed it is possible to do
so, and present an algorithm based on spectral decomposition that admits formal
performance guarantees on solution quality. We also show that the algebraic connec-
tivity or Fiedler value of the measurement graphs arising in pose-graph SLAM is a
key parameter controlling estimation accuracy.

Chapter [0] develops the MAC algorithm for graph sparsification. We consider
in particular the issue of long-term navigation, whereby controlling computational
expense and memory requirements of a SLAM system entails sparsifying the mea-
surement graph. Motivated by the insights from Chapter [, MAC designs sparse

pose-graphs by maximizing algebraic connectivity.
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Chapter 2

Background and preliminaries

This chapter covers relevant background on the problems considered in this thesis.
Section covers discusses relevant prior work and the “research gap” this thesis aims
to address. Section gives a brief exposition of important notation and preliminar-
ies. Section provides more in depth background on factor graphs an important

representational tool we use extensively in this thesis.

2.1 Overview of Related Literature

2.1.1 Inference in hybrid probabilistic models

The problem of inference in discrete-continuous (hybrid) graphical models arises in
many domains and intersects a number of communities, even within the field of
robotics. Our focus in this thesis will be on applications in robot perception, so
we primarily discuss related works in these settings. The interested reader may refer
to Dellaert [39] for a discussion of these models in broader robotics applications or
Koller and Friedman [75, Ch. 14| for a discussion of computational hardness, inference
techniques, and a detailed review of literature on the general problem of inference in
hybrid models. Finally, while we discuss the particular optimization approach con-
sidered in Chapter [3|in relation to existing methods, it is important to note: the mere

availability of a consistent framework in which these solutions could be implemented
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(as we develop in Chapter |3|) enables practitioners to compare different approaches
without the need to develop the additional scaffolding usually required to adapt an

existing method.

Multi-Hypothesis Methods. The class of approaches addressing hybrid es-
timation by enumerating and pruning solutions to the discrete states are referred
to as multi-hypothesis methods. These methods appeared in classical detection and
tracking problems [I115] and early SLAM applications [36]. MH-iISAM2 [63] extends
the capabilities of iISAM2 [70] to the case where measurements between continuous
variables may have ambiguity, which can be represented by the introduction of dis-
crete variables. MH-iSAM2 maintains a hypothesis tree, which can be constructed
and updated in an incremental fashion, like iISAM2, making the solver efficient. The
types of ambiguities they consider can all be represented as factors in a factor graph
where the discrete variables are all conditionally independent. This limits application
to scenarios where individual discrete variables can be decoupled. However, correla-
tions between discrete variables may arise in problem settings as diverse as switching
systems (Figure see also [67]), outlier rejection,E] and as we explore in Chapter
[ semantic SLAM. In order to retain computational efficiency, MH-iISAM2, like all
multi-hypothesis methods, must prune hypotheses, which risks the deletion of hy-
potheses that would have later become high-probability modes. iMHS [67] takes a
qualitatively similar approach to MH-iISAMZ2, but focuses on the problem of smoothing
in dynamic hybrid models, exploiting the specific temporal structure of this problem
setting. Their approach extends to the setting where correlations among discrete
variables are present. Like MH-iSAM2, however, the efficiency of iMHS rests on the

ability to prune incorrect modes.

Hybrid and Non-Gaussian Inference. Hybrid inference in graphical models
has been considered previously in many settings (see [124] for a review). Prior solution
methods focus on either specific models, such as conditional linear Gaussian models

(e.g. [113]) or attempt to approximate more general models in a manner amenable to

!Though we do not explore the issue of outlier rejection problems with correlations, the interested
reader may see Lajoie et al. [79] for a formulation in the setting of SLAM.
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standard techniques (e.g. by discretizing continuous state spaces to form a discrete
inference problem). Models encountered in robotics applications are typically high-
dimensional (often with numbers of states in the thousands) and non-Gaussian [119],
and solutions are often required quickly. This precludes direct application of these

techniques to the problems we explore in Section

Several approaches have been presented which consider non-Gaussian inference
with application to robot perception; many of these methods can be viewed as adap-
tations of general hybrid inference techniques tailored toward the computational re-
quirements and problem structure in specific robot perception problems. FastSLAM
[94] is an approach to filtering in SLAM with non-Gaussian models based on particle
filters. In particular, a set of particles representing the current state of a robot is
retained, and each particle independently samples associations from a distribution
over hypotheses. ~ Multimodal iISAM (mm-iSAM) [53] and NF-iSAM [65] perform
incremental non-Gaussian inference for continuous-valued variables using nonpara-
metric belief propagation [132] and normalizing flows, respectively. In situations
where discrete variables can be efficiently marginalized to produce a problem exclu-
sively involving continuous states, they can approximate the posterior marginals over

the remaining continuous variables.

In contrast, our work focuses on the task of MAP estimation from the perspective
of local optimization. While we describe a mechanism for approximating marginals
given an (approximate) MAP estimate, the uncertainties provided by non-Gaussian
inference techniques can be substantially richer. However, considering this some-
what more restricted problem setting (and coarser marginal approximation) affords
us considerable benefits in terms of computational expense. Prior works applying op-
timization techniques for MAP estimation in non-Gaussian models (e.g. [108] [120])
do so by marginalizing out discrete variables and using smooth local optimization
techniques on the resulting continuous-only estimation problem. Consequently, they

do not permit the explicit estimation of discrete states, as we consider in this thesis.

Existing Tools. Several existing solvers perform optimization with models that

can be represented in terms of factor graphs. Ceres [4] and g2o [60] provide nonlinear
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least-squares optimization tools suitable for robotics applications, but they are not
suitable for inference in hybrid factor graphs, e.g. as in Figure 3-11 GTSAM [3§]
provides incremental nonlinear least-squares solvers, like iISAM2 [70], and tools for
representing and solving discrete factor graphs; it is for these reasons that we choose
to extend the capabilities of GTSAM to the setting of hybrid, discrete-continuous
models. Finally, Caesar.jl [34] implements mm-iSAM [53], supporting approximate,
incremental non-Gaussian inference over graphical models commonly encountered in
SLAM, including discrete-continuous models in scenarios where discrete variables can
be eliminated through marginalization to produce a problem exclusively involving

continuous variables.

2.1.2 Data association and outlier rejection

Chapters |3] and [4] deal with problems of data association and outlier rejection. Clas-
sical work on target tracking led to the introduction of approaches like probabilistic
data association (PDA) [115] and multi-hypothesis tracking (MHT) [7] (as discussed
in Section . These methods were, in turn, applied in the context of filtering-
based state estimation [35, 36]. The joint compatibility heuristic for branch-and-
bound search was later proposed to prune the large number of plausible hypotheses
that arise in the context of multiple hypothesis tracking [100]. FastSLAM [93] intro-
duced a particle filtering-based approach to the non-Gaussian inference problem of
data association in which a data association sampler was introduced, serving as an
alternative to explicit search over associations.

Many methods for data association and outlier rejection have been proposed in
the context of smoothing-based graphical SLAM. The switchable constraints method
[133] incorporated outlier rejection into the usual smoothing-based SLAM estimation
process by introducing binary decision variables attached to each measurement. Max-
mixtures [105] choose the minimum cost assignment to discrete hypothesis variables
for a given estimate of the vehicle trajectory and map. The hybrid junction tree
inference method of Segal et al. [127] iteratively updates discrete variables. Methods

like pairwise-consistent measurement set maximization (PCM) [88|] reformulate the
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outlier rejection problem as one of find the largest pairwise-consistent set of measure-
ments. Though we do not apply PCM in our setting, one possible enhancement to our
approach would be to incorporate pairwise consistency constraints to rule out unlikely
data associations. Yang et al. [I45] propose a graduated nonconvexity (GNC) proce-
dure for optimizing (typically nonconvex) outlier-robust cost functions in which they
successively produce and optimize more well-behaved convex surrogate cost functions.
In a series of papers, Pfeifer et al. [T06HI08] address a variety of robot perception
applications by means of optimization over Gaussian mixture models. Their approach
can be shown to be equivalent to the sum-product elimination approach we discuss,
but rather than directly optimizing the marginal posterior, as in their work, we make
use of expectation-maximization, which leads to a somewhat simpler implementation

for optimizing the same objective.

The multi-hypothesis methods discussed in Section like MH-iISAM2 [63],
MH-JCBB [142], and iMHS [67] are the most recent incarnations of the multi-hypothesis
tracking paradigm as applied to data association and outlier rejection for SLAM sys-
tems. MH-JCBB uses the joint compatibility heuristic [100] for robust data associa-
tion, maintaining multiple “tracks” of data associations. All of these methods require
online pruning of association hypotheses, which may discard correct combinations of
hypotheses. Notably, the work presented in Chapters [3| and [4] allows us to exploit the
specific conditional factorization of robot perception problems to compactly represent

a large number of these hypotheses without the need to perform pruning.

Recent techniques consider robust estimation using convex relaxations [25], 27,
79, [144] to mitigate the effects of perceptual aliasing, often in the context of laser
scan matching or appearance-based loop closure. Restricting consideration to certain
measurement models (e.g. those encountered in pose-graph optimization or point
cloud registration), these approaches allow computation of lower bounds on the ob-
jectives encountered in outlier robust estimation. Existing methods, however, are
not adapted to the sorts of measurement models we consider here. Our approach
allows for a much broader range of measurement models, while sacrificing convexity.

An interesting area of future work would be to consider convex relaxations of the
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Figure 2-1: Coupled semantic SLAM systems. (a) SLAM++ [123] is one of the
first coupled semantic SLAM systems and uses maximum-likelihood data association
for semantic landmarks (with a priori known 3D object models). (b) The recent
work of Bowman et al. [I§] uses expectation-maximization to address the semantic
SLAM problem with unknown data association. Figures adapted from [123] and [1§],
respectively.

formulation in our current presentation, even for a slightly restricted class of models.

Finally, random finite sets [98] are a related formalism useful for describing and
performing inference involving the joint posterior distributions encountered when
combining the SLAM and data association problems. In this work, we opt to for-
mulate the data association and SLAM problems as a joint optimization procedure,
seeking only a point estimate of robot and landmark states. However, random finite
set approaches may present an interesting alternative in the setting where we aim to
infer a distribution over the variables of interest rather than a point estimate (see, for

example, [45] for prior work on the topic of semantic SLAM).

2.1.3 Map representation and semantic SLAM

Chapter [] of this thesis deals with map representation; particularly object-based, se-
mantic map representations, which may capture not just where environmental features
or landmarks are, but also what they are. Broadly, we are concerned with navigation
methods that incorporate learning-augmented perception methods, such as, but not
exclusively, object detectors. Most commonly, semantic map representations are con-
structed in a decoupled fashion, i.e. assuming the availability of accurate poses from

a SLAM or odometry system, e.g. [91) [121], and synthesizing semantic information
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(be it from an object detector, or other means) in a post hoc manner. However, clas-
sifications or descriptors obtained from object detectors have recently been used to
aid data association in the context of semantic SLAM, where inference of (typically
discrete) semantic labels is coupled with data association. Most work on this coupled
form of the semantic SLAM problem considers maximum-likelihood data association
[92, 10T, 102] 123] 146] (see Figure [2-1a)), which is effective for small spatial scales or
short-term operations where uncertainty growth can be more easily mitigated, a few
approaches consider robust alternatives. Robust handling of measurements acquired
via learned perception techniques is especially important in the long-term regime
where these methods are likely to encounter data inconsistent with that encountered
at training time (and we should not expect perfect precision and recall in the regime

as operation time “goes to infinity”).

A few recent approaches to semantic SLAM consider more robust alternatives.
The nonparametric Bayesian approach of Mu et al. [97] alternates between sampling
data associations and recomputing SLAM solutions. By retaining the association
variables during optimization, this method offers improved robustness compared to
maximum-likelihood data association, but the requirement to store and recompute
discrete association variables is computationally demanding. Bowman et al. [I§]
describe an expectation-maximization procedure for optimizing the marginal poste-
rior. In their setting, association variables are marginalized out and optimization
is performed on the resulting factor graph by alternating between computing data
association weights and improved assignments to robot and landmark states. In our
prior work [45], we considered a treatment of the semantic SLAM problem where
we marginalize out the data association variables and aim to approximate the non-
Gaussian posterior using nonparametric belief propagation [53] [132], and later, using
nonlinear least-squares for optimization [46]. In this work, we reveal that in fact prior
work making use of marginalization of data association variables (i.e. [18, 145, 46]) can
all be understood in terms of elimination operations on a factor graph. Moreover, this
allows us to construct an elimination approach in such a way that the SLAM prob-

lem defined over the eliminated graph is equivalent to the original problem. Finally,
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with these tools in hand, we show that we can represent the resulting association-
ambiguous measurements in terms of smart factors |28]. In consequence, one can
implement these models simply as factors within a hybrid factor graph optimization
framework (e.g. DC-SAM [47] as described in Chapter[3), thereby allowing practition-
ers to make use of these methods without the need to develop custom optimization

routines.

2.1.4 Performance guarantees and certifiable machine percep-

tion

In the interest of better understanding the performance of estimators used for robot
perception, in Chapter 5, we discuss the problem of initialization for pose-graph
SLAM and establish several performance guarantees for estimators. SLAM (as well
as multiple rotation averaging, where the variables we aim to estimate are restricted
to rotations) are often formulated as high-dimensional, nonconvex optimization prob-
lems, which are solved using local search techniques. Consequently, solving these
problems requires efficient algorithms for producing an “initial guess.” Historically,
research on this topic has focused on developing cheap, but typically inexact, con-
vex or linear relaxations of the SLAM (resp. rotation averaging) problems [30, 90].
While these techniques often work well in practice, the fact that they are obtained
as heuristic approximations makes it difficult to ascertain what specific features of
SLAM or RA problems determine their performance. Consequently, it is difficult to

assess under what conditions these techniques can be reliably deployed.

A related line of research is the development of Cramér-Rao bounds for the pose-
graph SLAM and rotation averaging problems [17], [33], [72]; these works provide lower
bounds on the achievable estimation error in expectation. In this work, we derive a
complementary set of upper bounds on the estimation error on a per instance basis.
Interestingly, our estimation error upper bounds depend upon precisely the same spec-
tral quantities as do the Cramér-Rao (lower) bounds, indicating that graph spectra

are objects of central importance in understanding the statistical properties of SLAM
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and RA estimators.

The spectral relaxation approach to initialization that we consider has previously
appeared in other problem settings, particularly in the area of phase synchronization
problems (cf. [15] 16l 80, 128]). In particular, Ling [80] describe error bounds that
are qualitatively similar to those described in Chapter [5] though theirs are concerned
specifically with orthogonal group synchronization problems. Liu et al. [81] take a
similar approach to ours in order to derive error bounds for spectral estimators of
synchronization problems defined over subgroups of the orthogonal group (including
SO(d)), but employ a different definition of the perturbation than the one we consider
here. As we will show, our notion of perturbation has the advantage that it follows
naturally from a generative model of SLAM and RA, and furthermore, directly reveals
the spectral properties of the measurement network (specifically, a kind of generalized
algebraic connectivity) as the key quantities controlling the worst-case performance

of our spectral initialization method.

Recently, Moreira et al. [95] proposed a computationally-efficient Krylov-Schur
decomposition approach for pose-graph SLAM. We show in Appendix that their
method is formally equivalent to a special case of the one we present in Chapter
(namely, an unweighted, rotation-only variant of our spectral initialization procedure).
However, our construction arises more naturally from spectral relaxation, and addi-
tionally allows for the incorporation of translational measurements, which we show
in Section can have a significant impact on estimation quality. Arrigoni et al. [5]
also describe a spectral method for SE(d)-synchronization. While an analysis similar
to ours could likewise be carried out for their method, the form of the relaxation they
consider would lead to more complicated bounds due to a dependence on the scale of
the translational states. Finally, Boots and Gordon [14] consider spectral techniques
for the range-only SLAM problem. Though their problem setting differs from the one
considered here, extension of the techniques presented in this work to scenarios with

different types of measurement models is an interesting area for future work.

Finally, certifiably-correct machine perception has emerged as a key area of inter-

est to the robotics community, resulting in the development of algorithms capable of
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directly computing globally optimal solutions of certain nonconvex estimation prob-
lems under moderate noise [20} 26, 29, 31, 41, [51), 118 136]. Our analysis provides
new bounds on the estimation error of the maximum likelihood estimators recovered
by these techniques in terms of the magnitude of the measurement noise. Moreover,
the bounds we present suggest that when these estimators, which are often based
on large-scale semidefinite relaxations, do attain globally optimal solutions, the re-
sulting estimates have error bounds that match (up to small constant factors) the
error bounds we derive for our spectral initialization, which is easily implemented

and computationally inexpensive.

2.1.5 Network design and information summarization

The work in Chapter [5] as well as prior work on performance guarantees for robot
perception (see e.g. [I19] for a review) identify spectral properties of measurement
graphs as key properties controlling estimation error. In Chapter [6] we will describe
approaches for leveraging these insights to develop algorithms for long-term SLAM.
In particular, these properties motivate an answer to the question what information
should we keep, and what can safely be forgotten? in the setting of lifelong navigation.
Prior work on this topic can be divided into information summarization and sparsifi-
cation, where we are interested in removal or compression of redundant information
online or after measurements are acquired, and network design, where the principal
objective is to decide where to add edges to a measurement graph or, more concretely,
where a robot should go next to gather information. While the latter topic (active
SLAM) is not a central focus of this thesis, many of the performance criteria for
making these decisions are identical to (or substantially overlap) those encountered

in the setting of information summarization or sparsification.

Importance of the algebraic connectivity in SLAM The importance of alge-
braic connectivity in general has been observed since at least 1973, with the seminal
work of Fiedler [52]. In robot perception, the algebraic connectivity has appeared

in the context of rotation averaging [17], linear SLAM problems and sensor network
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localization [72, [73], and pose-graph SLAM [33] as a key quantity controlling esti-
mation performance. In particular, Boumal et al. [17] observed that the inverse of
the algebraic connectivity bounds (up to constants) the Cramér-Rao lower bound on
the expected mean squared error for rotation averaging. In Chapter 5] we show that
it appears as a key quantity controlling the worst-case error of estimators applied
to measurement graphs in pose-graph SLAM and rotation averaging (where larger

algebraic connectivity is associated with (statistically) lower error).

Maximizing the algebraic connectivity The problem of maximizing the alge-
braic connectivity subject to cardinality constraints has been considered previously
for a number of related applications. Ghosh and Boyd [58| consider a semidefinite
program relaxation of the same objective we consider. Alternatively, Nagarajan [99]
considered a mixed-integer approach to optimize this objective. While our overall
approach can make use of any solution to the relaxation we consider, neither of these
methods scales to the types of problems we are considering. To the best of our knowl-
edge, this is the first time an approach has been proposed for pose graph sparsification
which makes use of any approach to solving a convex (or concave) relaxation of the

algebraic connectivity maximization problem.

Network design and pose graph sparsification The theory of optimal exper-
imental design (TOED) [IT1I] gives several optimality criteria applicable to network
design. Specifically, A-optimality, T-optimality, E-optimality, and D-optimality are
common criteria, each of which corresponds to optimizing a different property of the
information matrix describing the distribution of interest (in SLAM, this is typically
the joint distribution over robot and landmark states). Briefly, A-optimal designs
minimize the trace of the inverse of the information matrix, D-optimal designs max-
imize the determinant of the information matrix, E-optimal designs maximize the
smallest eigenvalue of the information matrix, and T-optimal designs maximize the
trace of the information matrix. Chen et al. [33] discuss the connections between

Cramér-Rao bounds for pose-graph SLAM and the A-optimality and T-optimality
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criteria. Historically, Cramér-Rao bounds and the optimal design metrics arising
from them have been popular tools for network design and active SLAM [33], [72],

including, e.g. in application to the planning of underwater inspection routes [74].

Khosoussi et al. [73] established many of the first results for optimal graph spar-
sification (i.e. measurement subset selection) in the setting of SLAM. The convex
relaxation they consider is perhaps the closest existing work in the literature to ours.
However, in contrast to the approach we present in Chapter [0 they consider the
D-optimality criterion, while the results in Chapter 5| as well as previous work on
Cramér-Rao bounds [17],33] strongly suggest that the quantity of interest with regard
to estimation performance is the algebraic connectivity, and therefore the E-optimality
criterionE] More practically, the E-optimality criterion is both less computationally

expensive to compute and to optimize.

Several methods have been proposed to reduce the number of states which need
to be estimated in a SLAM problem (e.g. [22] 23], 64}, 68]), typically by marginalizing
out state variables. This procedure is usually followed by an edge pruning operation
to mitigate the unwanted increase in graph density. Previously considered approaches
rely on linearization of measurement models at a particular state estimate in order
to compute approximate marginals and perform subsequent pruning. Consequently,
little can be said concretely about the quality of the statistical estimates obtained from
the sparsified graph compared to the original graph. In contrast, our approach does
not require linearization, and provides explicit performance guarantees on the graph
algebraic connectivity as compared to the globally optimal algebraic connectivity
(which is itself linked to both the best and worst case performance of estimators

applied to the SLAM problem).

20f course, by maximizing the smallest eigenvalue, the E-optimality criterion also selects for
information matrices with larger determinant.
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2.2 Notation and mathematical preliminaries

Lie groups and matrix manifolds: We will make use of the matrix realizations of
several Lie groups, most prominently the d-dimensional special Euclidean and special
orthogonal groups, denoted SE(d) and SO(d), respectively. SE(d) can be realized as

a matrix group according to:

SE(d) & € RV | B € SO(d), t e R 3, (2.1)
0 1

and the group SO(d) can be realized as:
SO(d) £ {R e R | R"R = I,, det(R) =1}, (2.2)

where I, is the (d x d) identity matrix. The Stiefel manifold St(k,n) is the set of

orthonormal k-frames in R™ (k < n):

St(k,n) £ {V eRV* | VTV = L, }. (2.3)

Linear algebra: For a symmetric matrix S, S > 0 denotes that S is positive-
semidefinite. The eigenvalues of a symmetric matrix S € R™™™ are denoted \;(S) <
Aa(S) < ... < A(S). We will also consider several block-structured matrices, and
make use of a few special operators acting on them. Following the notation of Rosen
et al. [118], given square matrices A; € R4 i = 1,... n, we let Diag(A,....A,)
denote the matrix direct sum (i.e., the block-diagonal matrix having Ay, ..., A4, as its
diagonal blocks). Furthermore, given a block-structured matrix B, let BlockDiag,(B)
denote the operator extracting a d x d block-diagonal matrix from B. Finally, let
SBD(d,n) denote the set of dn x dn symmetric block-diagonal matrices with diag-
onal blocks of size d x d, and SymBlockDiag,(A) be the operator extracting the
symmetrization of the d x d block-diagonal part of A.
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Probability and statistics: We denote the multivariate Gaussian distribution
with mean p € R? and covariance ¥ € S% as N(p,X). We denote the isotropic
Langevin distribution on SO(d) with mode M € SO(d) and concentration parameter
k > 0 as Langevin(M, k); this is the distribution whose probability density function
is:

p(R; M, k) =

el exp (ktr (MTR)), (2.4)

with respect to the Haar measure on SO(d), with ¢4(k) a normalization constant.

For an unknown variable Z we aim to infer, we denote its true (latent) value by
Z and a noisy measurement of Z by Z. We use the notation p(X | Z) to denote the
conditional distribution on a variable, X, given another, Z. When conditioning on a
particular (fixed) assignment to Z, e.g. Z = Z, we will often write p(X | Z) when we
mean p(X | Z = Z).

Gauge-invariant distance metrics: A key property of many of the geometric
estimation problems we consider (particularly in Chapters |5{and @ is that they admit
infinitely many solutions due to gauge symmetry. We therefore define the following
orbit distances in order to compare solutions to the rotation estimation problems

encountered in Chapters [5 and [f] in a symmetry-aware manner:

ds(X,Y)2 min | X —GY|r, X,Y €S0(d)" (2.5a)
GEeSO(d)

do(X,Y) 2 min ||X —GY|lr, X,Y €O0(d)" (2.5b)
GeO(d)

It will be convenient to “overload” the O(d) orbit distance to act on elements of the

set ¥ 2 {Y € R*™ | YYT = nl;} f| That is, for X,Y € »:

do(X,Y) 2 min |X — GY||p. (2.6)
GeO(d)

3The elements of )V admit a straightforward interpretation as transposed and re-scaled elements
of the Stiefel manifold St(d, dn) (see (2.3)).
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Each of these distances can be computed in closed form by means of a singular value

decomposition (see Rosen et al. [I18, Theorem 5|).

2.3 Factor graphs and probabilistic models

A factor graph G £ {V, F,E} with factor nodes f € F, variable nodes v; € V, and

edges & is a graphical representation of a product factorization of a function:

V) =11 /0
: 2.7)

Vké{UEV ’ (fk,v) Gg}

From a representational standpoint, factor graphs are tremendously general. In par-
ticular, it’s straightforward to verify that any function f can be decomposed in the
form of ; simply consider the trivial factor graph containing a single factor node
adjacent to all variable nodes in V. Second, it’s clear that there can be many factor
graphs G representing the same function. The key benefit of factor graphs as a mod-
eling tool is only realized when we (as practitioners) are careful about the particular
factor graph we use to model our function. We benefit from factor graphs when we
specifically intend to explicate conditional independence relationships that we know
exist in our model. Furthermore, there is an important “compositional” property of
factor graphs that will be relevant in our applications to SLAM: as we will see, we
will often construct the function f(V) dynamically online by adding new factors fy
to G which depend only on a local subset of V (e.g. as a robot navigates through an
environment). In this setting, the conditional independence relationships for the full
model f(V) need not be known a priori, knowledge of only the scope of individual
factors (the subset of variables a factor relates) is sufficient to explicate conditional
independence relations for the entire model. This is a property we will use exten-
sively throughout this thesis, and instances of its practical application will appear
specifically in Chapters [3] [4] and

In this thesis (and broadly in SLAM applications), we are primarily interested in
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factor graphs as they appear in probabilistic models. In particular, we will often be
interested in determining the most probable value of some unobserved states © given a
set of measurements Z ~ p(Z | ©) which are presumed to be sampled from a (known)
generative model p(Z | ©) conditioned on the true (unknown) values of the states ©.
Both the measurements Z and the unknown states © may be continuous (i.e. they
may take on any value from an uncountable set) or discrete (taking on values from
a countable set of outcomes). In practical robot perception applications, continuous
states and measurements are usually elements of some (often, but not necessarily
connected) subset of Euclidean space, e.g. rotations represented as elements of the
special orthogonal groups SO(2) or SO(3), translations in R? or R3, or rigid body
transformations represented as elements of SE(2) or SE(3). Discrete sets encountered
in application are essentially always enumerable (meaning they can be put in one-to-
one correspondence with a finite subset of natural numbers). Commonly encountered
examples include: binary variables in the set {0,1}, used to indicate whether to
“keep” a particular measurement or discard it as an outlier, or to indicate contact
with the ground; association variables which may indicate multiple hypotheses about
which environmental landmark was observed in a given measurement; and categorical

variables, e.g. in the set {cat, dog, house, chair} indicating object classes.

Given this context, the most fundamental problems encountered in SLAM are
maximum a posteriori (MAP )inference and computing marginals. Specifically, the

problem of MAP inference is as follows:

Problem 1 (MAP inference). Given a set of measurements Z, a model p(Z | ©)
relating measurements to unobserved states ©, and a prior distribution p(©) over
unobserved states (which may be uniform), the problem of MAP inference is to de-

termine an argument ©* maximizing the posterior probability p(© | Z ) over unknown
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states given the realized measurements 7, i.e.:

©* = argmax p(© | Z)
e
= argmax p(0, 7 = Z) (2.8)
e

= argmax p(Z | ©)p(0©),
©

where in the second line we have used the fact that p(© | Z) = p(©, Z)/p(Z) and
that the measurement values are constant with respect to the maximization. Note
that there may not be a unique maximizing argument in equation [2.8} in such cases

(in this thesis) we will be content with any maximizer.
The problem of marginal computationﬁ can be described as follows:

Problem 2 (Marginal computation). Given a set of measurements Z, a model p(Z |
©) relating measurements to unobserved states ©, and a prior distribution p(©) over
unobserved states (which may be uniform), the problem of marginal computation for

a subset of states ©; C O is to compute the distribution:

pol2)= [ vel

! (2.9)

- = /@ pzieme)

In applications, integrals of the form encountered in equation for typical
forms of the model p(Z | ©) will often be computationally intractable and we will
settle for some approximation of the marginals of interest (for example the Laplace
approzimation [13, Sec. 4.4] as we will encounter in Chapters [3[ and .

In many robot perception tasks (including SLAM), it is common that an individual
measurement 3, € Z depends only on a small subset ©;, C © of states to be estimated.

For example, a global positioning system (GPS) measurement of a robot’s position

4Note that the marginals we consider here arise from integration or summation over the values
of the marginalized variables. We will also discuss maz-marginals in this thesis; these are functions
obtained by replacing the integral in eq. with a max over the same values. These operations
(summation and maximization) correspond to sum-product and max-product variable elimination
procedures for probabilistic graphical models (cf. [75] for a general reference).
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depends on the location of the robot at the time the measurement was taken, but not
where it was before or after the measurement. Similarly, the relative position of a
landmark as measured by a moving observer depends only on the pose of the observer
and the location of the landmark. These properties are reflected in the conditional
independence relationships that appear in our model. In particular, we will assume
that a measurement % is independent of all other measurements Z \ {%,} and states

© \ O given the specific unknown states ©, C © it relates. Formally, we say:
(% 10,2\ {Z}) = p( | O%). (2.10)

The straightforward consequence of this conditional independence structure is that

the joint likelihood p(Z | ©) admits a factorization as:

p(Z|©)=]]rCGk |6
K (2.11)

O, C 6.

In turn, we recognize that the joint distribution p(©,Z = Z) admits a very natural
factor graph representation G = {V, F,E} (of the form in eq. (2.7])) which explicates
the same conditional independence relations appearing in eq. (2.11)), i.e.

p(©.2) =[] fu(®)
k (2.12)

Or={0€O|(fi,0) €&},

where each factor f; is in correspondence with a measurement likelihood term of the

form p(Zx | ©) or a prior term of the form p(Oy).
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2.4 Probabilistic inference as nonlinear optimization

Given the decomposition of the joint in eq. (2.12)), we may rewrite the MAP inference
problem (Problem [I)) in the following form:

©* = argmaxp(© | Z)
e

— argmax p(©, Z)
S
(2.13)
= argglaXH fr(©k)
k

= argénin Z —log fx(Ok).
ke

That is, we may obtain a MAP estimate ©* by minimizing the negative logarithm of

the joint (evaluated at Z = Z2).

Everything we have done so far has been perfectly general. It will often be con-
venient, however, to restrict consideration to models where the optimization in eq.

(2.13) is equivalent to a nonlinear least-squares problem. Formally, we say:

©* = argmax p(© | 2)
e (2.14)
= argéninz [ZACHI
k

for some (typically nonlinear) function r; : © — V mapping a subset of unknown
states Oy to vectors in a subset V of R™. It turns out that the conditions under which
the equivalence in eq. hold are quite general (cf. Rosen et al. [120, Theorem
)P} If we further assume that f;, € C'(2) (by which we mean f; is continuously
differentiable on €, the space of values taken on by ©;), then a reasonable approach
for approximate inference would be to apply gradient-based numerical optimization
starting from an initial assignment to ©. This is the approach taken by essentially
every state-of-the-art technique for MAP inference in graphical models that has been

applied to SLAM (cf. [21], 39, 119] for relevant reviews, and [60, [70] for specific

5In particular, it suffices to assume that factors fj are positive and bounded above.
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techniques).

2.5 Common examples of SLAM problems

The mathematical form of SLAM problems is essentially indistinguishable from the
more general Bayesian inference problems of MAP inference (Problem and marginal
computation (Problem [2). There are three distinguishing considerations of SLAM
specifically that are not present in the more general forms of these problems: (1) the
particular (typically geometric) nature of the measurement models and states to be
estimated, (2) the need to construct a model incrementally and online, and (3) the
practical necessity of solving these problems (estimating unknown states) quickly (i.e.
in real time), even if this means resorting to approximation. With respect to the first
consideration, the following subsections provide exposition for the two most common
formulations of SLAM problems: landmark-based SLAM in which a robot aims build
a map of surrounding landmarks while localizing itself within that map, and pose-
graph SLAM in which all measurements are relative transforms (e.g. elements of

SE(3) for three-dimensional problems) between robot poses (also elements of SE(3)).

2.5.1 Landmark-based SLAM

In (three-dimensional) landmark-based SLAM (illustrated in Figure[2-2)), we consider
the problem of inferring jointly a map of environmental landmarks L £ {lr,... by}, 4 €
R? and the trajectory of a robot X = {zy,...,z,},7; € SE(3) given a subset of mea-
surements of their pairwise relationships (including, e.g. the relative position of a
landmark /¢; in the frame of pose z;, the relative SE(3) transform from one pose to
another, among others), denoted Z.

A critical component of landmark-based SLAM is the determination of which (if
any) mapped landmark was measured during the observation Z;. This is referred to
as a correspondence problem or the data association problem, and it will be a key

focus of study in Chapter [4
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Figure 2-2: Illustration of landmark-based SLAM. The example above illustrates
the problem of landmark-based SLAM where a robot simultaneously builds a map
of environmental landmarks (here represented as points on a coral reef) and uses
repeated observations of those landmarks to localize itself within a globally-consistent
coordinate frame (here represented by the axes on the bottom-left of the figure).

2.5.2 Pose-graph SLAM

In contrast to landmark-based SLAM, in pose-graph SLAM we only aim to estimate
the trajectory of a robot X = {z1,...,2,}, z; € SE(3) given (potentially noisy)
measurements Z;; € SE(3) of a subset of their true pairwise relative transforms Qci_lg:j.
In pose-graph SLAM, a place recognition system, for determining when an observation
is sufficiently “similar” to a previous one to suggest that our robot has returned to a
previous location, replaces explicit long-term data association for the purposes loop
closure (see Lowry et al. [82] for a review). Specific instances of pose-graph SLAM
problems will appear in Chapters [3] [, and [6]
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Figure 2-3: Illustration of pose-graph SLAM. The example above illustrates
the problem of pose-graph SLAM. Here, a robot does not explicitly maintain a map
of landmarks, but visually similar observations are used to determine loop closures
in order to localize the robot within a globally-consistent coordinate frame (here
represented by the axes on the bottom-left of the figure).
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Chapter 3

Discrete-continuous smoothing and

mapping

The previous sections considered the motivation for this thesis and discussed relevant
preliminaries for understanding state-of-the-art techniques for inference in graphical
models (and their application to localization and mapping problems). This chapter
presents the first major contribution of this thesis.

Specifically, the probabilistic modeling approach described in the previous chapter
has become the dominant representational paradigm in robot perception applications,
appearing in a wide range of important estimation problems. This formalism has led
to the development of numerous algorithms and software libraries, such as GTSAM
[38], which provide flexible and modular languages for specifying and solving optimiza-
tion problems defined by these models (typically in terms of factor graphs). Among
the models relevant to robotics applications, discrete-continuous graphical models cap-
ture a great breadth of key problems arising in robot perception, task and motion
planning [54, Sec 3.2|, and navigation, including data association, outlier rejection,
and semantic simultaneous localization and mapping (SLAM) [119] (see Figure 3-1)).
Despite the importance of these models, while ad hoc solutions have been proposed
for particular problem instances, at present there is no off-the-shelf approach for hy-
brid problems that is either as general or as easy-to-use as similar methods for their

continuous-only or discrete-only counterparts. Notably, the state-of-the-art gradient-
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Figure 3-1: Discrete-continuous factor graphs in robotics. Factor graphs mod-
eling several relevant discrete-continuous robot perception problems. Discrete vari-
able nodes are colored red, continuous variable nodes are blue, and factor nodes are
black. (a) Switching systems: discrete states control the evolution of a continuous
process. (b) Outlier rejection: discrete inlier/outlier variables control whether a sub-
set of untrusted measurements should be used in estimating continuous variables. (c)
Point-cloud registration: discrete variables represent correspondences and the con-
tinuous variable is the relative transformation from a source to target point-cloud.

based approaches described in the previous chapters are not directly applicable in

this case. This is the problem that we address in this chapter.

Our key insight is that in many instances, while maximum a posteriori (MAP)
inference for graphical models containing both discrete and continuous variables is
hard (see e.g. [75], Sec. 14.3.1]), if we fix either the discrete or continuous variables,
local optimization of the other set is easy. Continuous optimization can be performed
using smooth, gradient-based methods, while discrete optimization can be performed

exactly for a fixed assignment to the continuous variables by means of standard max-
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product variable elimination [75, Sec. 13.2.1]. In turn, our approach can be perform
efficient inference in high-dimensional, nonlinear models commonly encountered in
robotics. Moreover, this approach naturally extends many of the additional desired
capabilities of an inference approach in robotics applications, such as incremental
computation [70] and uncertainty estimation (cf. [69]) to the hybrid setting.

Our contributions are as follows: From a robotics science standpoint, we show that
by leveraging the conditional independence structure of hybrid factor graphs com-
monly encountered in robotics problems, efficient local optimization can be performed
using alternating optimization, which we prove guarantees monotonic improvement
in the objective. Because our approach naturally respects the incremental structure
of many such problems, it easily scales to thousands of discrete variables without
the need to prune discrete assignments. From a systems standpoint, our discrete-
continuous smoothing and mapping (DC-SAM) libraryf] extends existing GTSAM
tools by adding (1) explicit constructions for hybrid discrete-continuous factors, (2)
a new solver capable of computing approximate solutions to the corresponding es-
timation problems, and (3) an approach for approximating uncertainties associated
with solutions to these problems which does not depend on the solver we employ
(and therefore is likely to be of independent interest). To the best of our knowledge,
these are the first openly-available tools for general discrete-continuous factor graphs
encountered in robotics applications. We demonstrate the application of our meth-
ods to point-cloud registration, robust pose graph optimization. In the next chapter,

we will make use of the tools and ideas developed in this chapter in application to

semantic SLAM.

3.1 Problem formulation

We are interested in determining the most probable assignment to a set of discrete

variables D and continuous variables C' given a set of measurements Z. Under the

!The DC-SAM library is  currently available at  https://www.github.com/
MarineRoboticsGroup/dcsam.
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assumption that each measurement z; is independent of all others given the subset of
variables Vi, C V it relates, we can decompose the posterior p(C, D | Z) into a product

of measurement factors fi, each of which depends only on a subset of variables Vj

(cf. eq. (2.11))):

p(C.D | Z) o [ fsV),
K (3.1)

Ve 2 {veV|(fi,v) €€},
where each factor f; is in correspondence with either a measurement likelihood of
the form p(Z; | Vi) or a prior p(Vy). From (B1)), the posterior p(C, D | Z) can be
decomposed into factors f, of three possible types: discrete factors fi,(Dy) where Dy, C
D, continuous factors fi(Cy), Cx C C, and discrete-continuous factors fi(Cy, D).
In turn, the maximum a posteriori inference problem can be posed in terms of the

following adaptation of Problem
C*,D* = argmax p(C, D | Z)
C.D
= argmax V
gm 1;[ TuVe) (3.2)

= argmin Z —log fr(Vk).
cp <

That is to say, we can maximize the posterior probability p(C, D | Z) by minimizing
the negative log posterior, which in turn decomposes as a summation. Though the
theoretical aspects of the methods we propose are quite general, in application we
will primarily be concerned with factor graphs in which maximum likelihood estima-
tion (or maximum a posteriori inference) can be represented in terms of a nonlinear
least-squares problem, which permits the application of incremental nonlinear least-

squares solvers like ISAM2 [70] E| In particular, we consider discrete-continuous factors

2As we note in Section this turns out not to be particularly restrictive, as any factor which
is positive and bounded admits an equivalent representation in terms of a nonlinear least-squares
cost function for the purposes of optimization.
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(a) Discrete solve iteration. (b) Continuous solve iteration.

Figure 3-2: Overview of a single iteration of optimization. (a) First, given an
initial iterate C'® we solve exactly for the optimal assignment to the discrete variables
using max-product elimination. (b) Next, given the latest assignment to the discrete
variables, we update the continuous variables (e.g. using a trust-region method [117]).
Color depicts the objective value of a solution, ranging from low cost (blue) to high
cost (red).

frx(Cy, Dy) admitting a description as:

—log fx(Ck, Di) = ||re(Ch, Di) |13,
CyCC, D, CD,

(3.3)

where the function r, : @ xD — R™, Q CR? D C NloDl is first-order differentiable
with respect to C'. We consider factors involving only continuous variables admitting

an analogous representation. We place no restriction on discrete factors.

3.2 Overview of the approach

The following subsections describe our approach to solving optimization problems
of the form in . In Section we outline our core alternating minimization
procedure and prove that our approach guarantee monotonic descent guarantees. In
Section [3.2.2], we describe how our approach can easily benefit from existing incre-
mental optimization techniques to efficiently solve large-scale estimation problems.
Finally, in Section [3.2.3] we consider the issue of estimating uncertainties for the

solutions provided by our method.
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3.2.1 Alternating minimization

In general, the MAP inference problem in ({3.2) is computationally intractable [75)
Sec. 13.1.1]. Indeed, even the purely continuous estimation problems arising in robot
perception are typically NP-hard, including rotation averaging and pose-graph SLAM
[119]. Despite this, smooth (local) optimization methods often perform quite well on
such problems, both in their computational efficiency (owing to the fact that gradient
computations are typically inexpensive) and quality of solutions when a good initial-
ization can be supplied. However, even if we assume the ability to efficiently solve
continuous estimation problems, the introduction of discrete variables complicates
matters considerably: in the worst-case, solving for the joint MAP estimate globally
requires that for each assignment to the discrete states we solve a continuous opti-
mization subproblem, and discrete state spaces grow exponentially in the number of
discrete variables under consideration. Consequently, efficient approximate solutions

are needed.

Our key insight is that we can leverage the conditional independence structure of
the factor graph model to develop an efficient local optimization method which we
prove guarantees monotonic improvement in the posterior probability. To motivate
our approach, we first observe that if we fix any assignment to the discrete states,
the only variables remaining are continuous and approximate inference can be per-
formed efficiently using smooth optimization techniques [70], [117]. In this sense, if we
happened to know the assignment to the discrete variables, continuous optimization
becomes “easy.” On the other hand, if we fix an estimate for the continuous variables,
we are left with an optimization problem defined over a discrete factor graph which
can be solved to global optimality using max-product variable elimination |75, Sec.
13.2.1], but in the worst case may still require exploration of exponentially many dis-
crete states. However, it turns out that for many commonly encountered problems,

we can often do much better than the worst case.

For example, consider a partition of the discrete states into mutually exclusive
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subsets D; C D which are conditionally independent given the continuous states:

p(D|C.2) o [[o(D;1C.2). (3.4)
J
It is straightforward to verify from the mutual exclusivity of each set D; that the prob-
lem of optimizing the conditional in (3.4)) then breaks up into subproblems involving
each Dj:
mgxp(D | C,Z) «x H [n}%XP(Dj | C,2)| . (3.5)
J

Critically, we have exchanged computation of the maximum of the product with
the product of each maximum computed independently. In cases where the discrete
states decompose into particularly small subsets (|D;| < |D|), inference may be
carried out efficiently. Many hybrid optimization problems encountered in robotics
admit such advantageous conditional independence structures. For example, Figures
[B-1band [3-1¢, depicting robust pose graph optimization and point-cloud registration,
respectively, admit a decomposition of the form in equation (3.4) where each subset
D; contains only a single discrete variable. Moreover, some discrete factor graphs do
not decompose quite so drastically after conditioning on continuous states, but may
still permit efficient inference. For example, Figure depicts a switching system
in which, after conditioning on the continuous variables, the resulting discrete graph
is a hidden Markov model, for which the most probable assignment to the discrete

states can be computed in polynomial time using the Viterbi algorithm [140].

In turn, we will use these ideas to construct an algorithm for efficiently producing
solutions to problems of the form in E| Consider the negative log posterior,
defined as:

L(C,D) % —logp(C,D | Z). (3.6)

3The approach we present does not require that a model admit a conditional factorization like the
one in equation (3.4), though it improves computational efficiency considerably (see Section
for a discussion).
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From (3.2)), the joint optimization problem of interest can be formulated as:

C*,D* = argmin L(C, D). (3.7)
C.D

Our alternating minimization approach (depicted in Figure [3-2)) proceeds as follows:

first, fix an initial iterate C®. Then, we aim to solve the following subproblems:

DY — argmin £(CY, D) (3.8a)
D
C*Y) = argmin £(C, DY), (3.8b)
C

We may then repeat and until the relative decrease in £(C, D) is suffi-
ciently small or we have reached a maximum desired number of iterations. Finding
minimizers for the subproblems and may still be challenging. Fortu-
nately, one need not find a minimizer for the subproblems and in order
for our approach to ensure monotonic improvements to the objective. In particular,

we require only that at each iteration the following descent criteria hold:
L£(CY DYy < £(Cc® D) (3.9a)

L(CHD, Dty < £(Cc®, plith)y, (3.9b)

There are many methods for updating the discrete and continuous states that satisfy
and , respectively. For the discrete states, the descent criterion in ((3.9al)
can be ensured by using the max-product algorithm to compute the optimal solution
to the subproblem in . For the continuous states, the descent criterion in (3.9b)
can be guaranteed by, for instance, using a trust region method (e.g. [I17]) to refine
the continuous states with respect to the objective in . In turn, we obtain the

following proposition:

Proposition 1. Let L(C, D) be the objective to be minimized, with initial iterate
CO DO Suppose that at each iteration, the discrete update satisfies the descent cri-
terion in (3.9a) and likewise for the continuous update in (3.9b)). Then, the estimates
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CW_ DO obtained by alternating optimization satisfy:
£(C9 DOy > W pWy>. >cC® DD, (3.10)

That is, this procedure ensures monotonic improvement in the objective.

Proof. Fix an initial iterate (C®), D®)). By hypothesis, after a discrete update, we
have £(C®, DEHD) < £(CD, DW) (from (3.94)). Consequently, the updated assign-
ment comprised of the pair (CV, DU+Y) is at least as good as the previous assign-
ment. By the same reasoning, performing a subsequent continuous update gives a
pair (CO+Y | D) gatisfying £(COH), DY < £(C®, D) (from (3.9b). Com-

bining these inequalities, we have:
L(CD DDy < £(c® DYy < £(C® DO, (3.11)

The above chain of inequalities holds for all 7, completing the proof. n

3.2.2 Online, incremental inference

Many robotics problems naturally admit incremental solutions wherein new informa-
tion impacts only a small subset of the states we would like to estimate. Because
our alternating minimization approach relies only upon the ability to provide an im-
provement in each of the separate discrete and continuous subproblem steps, we can
rely on existing techniques to solve these problems in an incremental fashion. In
particular, in the continuous optimization subproblem, we use iSAM2 [70] to refactor
the graph containing continuous variables into a Bayes tree, permitting incremental
inference of the continuous variables. Similarly, owing to the discrete factorization in
, if, for example, we introduce new discrete variables which are conditionally in-
dependent of all previous discrete states given the current continuous state estimate,
we are able to solve for the most probable assignment to these variables without the
need to recompute solutions for previously estimated variables. In turn, we are able

to efficiently solve online inference problems, as we will demonstrate in Section {4} in
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which we produce solutions to online SLAM problems.

3.2.3 Recovering marginals

Uncertainty representation is important in many applications of robot perception.
DC-SAM supports post hoc recovery of approximate marginal distributions for dis-
crete and continuous variables from an estimate. For continuous variables, we use
the Laplace approzimate |13, Sec. 4.4] adopted by several nonlinear least-squares
solvers (Ceres, g20, and GTSAM). In particular, we fix a linearization point for the
continuous variables (and a current estimate for discrete variables) and compute an
approximate linear Gaussian distribution centered at this linearization point. For
discrete variables, we fix an assignment to the continuous variables and compute the
exact discrete marginals conditioned on this linearization point using sum-product

variable elimination [75, Ch. 9-10]. The marginals we recover, then are:

p(D; 1 C,Z)=> p(D|C,Z), D;CD, (3.12a)
D\D,

p(C; | D,2) =/ p(C'| D, Z), C;CC. (3.12b)
C\C;

The reason for this approach is that in general, the number of posterior modes cap-
tured by a particular (discrete-continuous) factor graph can grow combinatorially.
Computing exact marginals (i.e. determining exact solutions to Problem [2)) can eas-
ily become intractable. In contrast, by making use of the conditional factorization
in , solving for the discrete marginals in (3.12a)) is often tractableﬁ Notably,
our approach to marginal recovery does not require that one use the alternating min-
imization strategy outlined in Section [3.2.1; any method of providing an estimate
(C, D) will suffice.

The continuous marginals in are estimated using the Laplace approxima-

tion [69]. In our derivation, it will be convenient to consider the continuous states as

4Tt is also interesting to note that the discrete marginals we recover are ezactly the “weights”
computed in the expectation step of the well-known expectation-maximization (EM) algorithm [42].
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a vector C' € R?. Assume the point (C’, ﬁ) is a critical point of the continuous sub-
problem (3.8b)), i.e. VL(C, D)|C = 0. Consider a Taylor expansion of the objective
L(C, D) about the point C:

~ ~ A~ 1 ~
L(C,D) = L(C, D) - A (c - c) , (3.13)
with the d x d Hessian matrix A defined as:
A2 _V2L(C, D). (3.14)

Exponentiating both sides of (3.13]) and appropriately normalizing the result gives

the linear Gaussian approximation:

oA 1
p(c | D7 Z) ~ (27T)d/2 exXp _§HC - CHA—l ) (315>

where ||¢[|4-1 denotes the Mahalanobis norm vcTAc. When all factors involving
continuous variables take the form in (3.3)), the locally linear approximation of £
about C' admits a Hessian A which can be expressed in terms of the Jacobian of
the measurement function r, and we have A > 0 [40]. Additionally, the relevant
components of the matrix A for estimating the marginals for a subset of variables C;

can be recovered from its square root, i.e. the square-root information matriz (cf.

[69])-

3.3 Example applications

In the following sections we provide example applications motivated by typical robot
perception problems. In Section we demonstrate application of DC-SAM to the
problem of point-cloud registration and show that it naturally generalizes the well-
known iterative closest point (ICP) method [12}32]. In Section [3.3.2 we consider the
problem of robust pose graph optimization, where we aim to estimate a set of poses

given only noisy measurements between a subset of them, and some fraction of those
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(a) Point-cloud registration

(b) Robust pose graph optimization

Figure 3-3: Example applications. (a) Point-cloud registration using the Stanford
Dragon dataset [37]. (b) Robust pose graph optimization using the Sphere dataset
[70]. Each row displays the sequence of iterates for our method. In each case, we
obtain high-quality solutions in just a few iterations.

measurements may be outliers. We implement a straightforward approach to solving

this problem using DC-SAM and show that it produces competitive results.

3.3.1 Point-cloud registration

As a simple first example, we will consider the point-cloud registration problem.

Consider a source point-cloud Pg = {p; € R? i = 1,...,n} and target point-cloud
Pr = {p;[ € RY j=1,...,m}. Associate with each point in the source cloud p a
discrete variable d; € {1,...,m} determining the corresponding point in the target

cloud. The goal of point-cloud registration is to identify the rigid-body transformation

T € SE(3) that minimizes the following objective:

n

i TpS — T |2, 3.16
Téﬁé?g);” P — pl |3 (3.16)

The key challenge encountered in this setting is that the correspondence variables d;
are unknown and unobserved. We might consider, then, introducing the correspon-
dence variables into the optimization, to determine the best set of correspondence

variables and the corresponding rigid-body transformation of the point-cloud, ob-
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taining the following problem:

‘ Tp; = pall3- 3.17
die1:7g}%IGlSE(3);H Di pdi||2 ( )

Unfortunately, this problem is nonconvex and solving it to global optimality is, in

general, NP-hard, requiring search over O(n™) discrete state assignments.

A popular algorithm for solving the problem in equation (3.17)) is to first posit an
initial guess for the transformation 7', determine the transformed locations of each
of the points in the source cloud, then associate each point in the source cloud with
the nearest point in the target cloud after the transformation. This is the iterative
closest point (ICP) algorithm [12, 32]. Defining r;(T',d;) = Tp; — p} , we can see that
the problem in equation is concisely described in terms of factors of the form
. Moreover, the conditional independence structure of the graph corresponding
to this problem (depicted in Figure immediately motivates our alternating opti-
mization approach, since each d; in fact decouples when conditioned on T'. Finally,
one can verify that our alternating optimization procedure turns out to be identical
to ICP (as described above) in this setting. To demonstrate this fact, we applied our
method to point cloud registration using the Stanford Dragon dataset [37], the results
of which are depicted in Figure Indeed, we observe that our approach produces
qualitatively reasonable results in just a few iterations. Moreover, while implement-
ing ICP typically requires that we explicitly write the (independent) correspondence
updates and transform update, we need not encode this explicitly at all: the fact
that the discrete (correspondence) update separates into independent subproblems is
simply a consequence of the conditional independence structure of the factor graph
model in Figure [3-1¢, That said, our approach does not have knowledge about the
particular spatial structure of the problem and therefore performs naive search over
discrete assignments. In contrast, a typical implementation of ICP would make use of
efficient spatial data structures to speed up the solution to the discrete subproblem,
see [122] (indeed, such optimizations for particular problems like this would make for

interesting future applications of the DC-SAM library). However, unlike any partic-
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ular ICP implementation, our solver can be readily extended (without modification)
to more complex cost functions or models because the structure of the subproblems

is dictated by the independence structure inherent in the graphical model.

3.3.2 Robust pose graph optimization

In this section we consider robust pose graph optimization. Recall (from Section
that in pose graph optimization we are interested in estimating a set of poses
T1,...,%T, € SE(3) from noisy measurements Z;; of a subset of their (true) relative
transforms z;; = x; 12:]-. This problem possesses a natural graphical structure G =
{V, 3 } where nodes correspond to the poses z; to be estimated and edges correspond
to the available noisy measurements between them. Pose graph optimization then

aims to solve the following problem:

i 37 1o (55'r ) I (318)
{i,j}€€

TV
7ij (%i,%;5)

where log(-)" : SE(3) — RS takes an element of SE(3) to an element of the tangent
space (cf. [, Sec. 8.3.2]), and X € R is a covariance matrix.

Suppose however, that some fraction of our measurements are corrupted by an un-
known outlier process. We would like to determine the subset of outlier measurements
and inlier measurements, as well as the corresponding optimal poses. It is typical to
assume that the edges £ partition into a set of trusted odometry edges 5@ and a set of
untrusted loop closure edges &r. It is common to address this problem by introducing
binary variables d;; € {0,1} for each of the untrusted edges (cf. [3, 105, 127, 133]),
where d;; = 1 indicates that the measurement Z;; is drawn from the outlier process.
Since the outlier distribution is unknown, it is common to assume that the outlier
generating process is Gaussian with covariance 3 = ¥ much larger than the inlier
model covariance. In turn, the problem of interest can be posed as follows:

min Y gz )+ D elw, zy,dig), (3.19)

x; ESE(?)) . .
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(d) Garage

Figure 3-4: Robust pose graph optimization. Average trajectory errors on (a)
the Intel dataset, (b) the CSAIL dataset, (c) the Sphere dataset, and (d) the Garage
dataset. Left to right: translation error, rotation error, and computation time. Statis-
tics computed over 10 Monte Carlo trials. LM refers to the result obtained by running
Levenberg-Marquardt on the corrupted graph.
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where

—logwo + ||rij(z:, ) ||%, dij =0,
eij('rhxj?dij) = ’ s ’ (320)

—logwy + [[rij(zi, z) 13, dij =1,

and wy, wy € [0, 1] are prior weights on the inlier and outlier hypotheses, respectively.
Letting |€z| = m, there are O(2™) possible assignments to the discrete variables in
this problem. However, the above formulation can easily be represented in terms of
discrete factors for the weights wy, w; and discrete-continuous factors of the form in
to switch between the Gaussian inlier and outlier hypotheses. Moreover, once
again, the discrete variables decouple from one another conveniently when we condi-
tion on an assignment to the continuous variables (Fig. |3-1b shows the corresponding
graph).

In our experimental setup, we corrupt pose graphs with outliers generated between
a random pair of (non-adjacent) poses with relative translation sampled uniformly
from a cube of side-length 10 meters and rotation sampled from the uniform distri-
bution over rotations (a similar process to the one described in [138, Section VI.C]).
Based on the prior work of Olson and Agarwal [105], we made the outlier covariance
model isotropic with variance 107 times larger than the inlier variance and set the
weights wp, w; to be the corresponding Gaussian normalizing constants. We pro-
vide two points of comparison: a Levenberg-Marquardt (LM) solver applied to the
graph corrupted by outliers (as a “worst case”) and the state-of-the-art graduated
nonconvexity (GNC) solver [I45]F] Our results are summarized in Figure 3-4 In
particular, we observe that in the cases that we are able to supply a high-quality
initialization, optimization using our approach enables recovery of accurate SLAM
solutions significantly faster than the GNC approach (and in some cases, faster than

the non-robust baseline)ﬁ Our approach is susceptible to local optima (leading to

5We use the GNC approach implemented in GTSAM with the truncated least-squares cost. We
use the default parameters from the GTSAM implementation, though the performance of GNC
(in terms of computation time and solution quality) may be improved over the results shown here
through further parameter tuning.

6The computation speed of our approach is primarily derived from two factors: first, we exploit
efficient incremental optimization via iSAM2, and second, our optimization procedure is purely
local, as opposed to GNC which requires solving re-weighted variants of the original pose graph
optimization problem several times in an effort to improve robustness to initialization.
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suboptimal performance on the CSAIL dataset). We will revisit this issue in Section

.42

3.4 Discussion

3.4.1 When is alternating minimization efficient?

The conditional factorization in equation serves to give some intuition for when
our optimization approach is computationally efficient. If the distribution over dis-
crete variables conditioned on the continuous assignment admits a factorization into
small subsets D;, then the optimization problem in decouples into separate
problems in direct correspondence with each set D;. Since we perform exact infer-
ence on this distribution, solving for the most probable assignment is in the worst case
exponential in the size of D; [75]. Consequently, in graphs with densely connected
discrete variables that are not decoupled by continuous variables, the per iteration
complexity of alternating minimization can increase dramatically. That said, Propo-
sition (1| ensures monotonic improvement in the objective so long as each optimization
subproblem admits a solution no worse than the current iterate. Therefore, it is rea-
sonable to consider extending this approach by allowing for local optimization in the

discrete subproblem [126].

3.4.2 When can we ensure accurate solutions?

Though we are able to make some claims about when solutions to the discrete and
continuous subproblems in our alternating minimization approach can be tractably
computed, the question remains as to when one can ensure that these local search
methods recover high-quality solutions. Since the alternating minimization approach
is a descent method, we rely on the ability to provide a “good” initial guess from
which purely going “downhill” in the cost landscape is enough to obtain a high-
quality estimate. However, this is already a requirement of off-the-shelf tools for

solving many robot perception problems, such as pose-graph SLAM, which (by virtue

59



of the nonconvexity of the optimization problems they attempt to solve) require high-
quality initialization [I19][] Nonetheless, the consideration of discrete variables can
make initialization more challenging. The specifics of providing an initial guess will
ultimately depend heavily on the application.

One can also attempt to reduce the initialization sensitivity of solutions obtained
by our local optimization approach. A number of methods along these lines have been
proposed. For example, graduated nonconvexity (GNC) [145] as discussed in Section
3.3.2] optimizes nonconvex functions by successively producing (and optimizing) a
more well-behaved (typically convex) surrogate. Sampling methods and simulated
annealing methods can improve convergence by allowing for the exploration of states
that may increase cost or by initializing a descent method like our proposed approach
from several starting points [86, 135]. Similarly, stochastic gradient descent is a
classical approach for nonconvex optimization (and has appeared in the setting of
robust pose-graph SLAM [104]), which could reasonably be adapted to our approach.
Finally, heuristics have been considered which use consistency of measurements to

filter out unlikely hypotheses [88] or to re-initialize estimates for factor graphs [84].

3.5 Summary

In this chapter we presented an approach to optimization in discrete-continuous
graphical models based on alternating minimization. Our key insight is that the
structure of the alternating optimization procedure allows us to leverage the condi-
tional independence relations exposed by factor graphs to efficiently perform local
search. We showed how the complexity of inference in this setting is related to
structure of the graphical model itself. Critically, we observed that many important
problems in robotics can be framed in terms of graphical models admitting particu-
larly advantageous structures for application of our approach. We provided a method

for addressing the issue of recovering uncertainties associated with estimates in the

"Moreover, even in these “simpler” problem instances, verification that a globally optimal solution
has been found has only been demonstrated for certain special cases (see [I19, Sec 2] for a review)
and is otherwise itself an open problem.
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discrete-continuous setting. Our solver and associated tools are implemented as part
of our library, DC-SAM, which is, to the best of our knowledge, the first openly avail-
able library for addressing these hybrid discrete-continuous optimization problems.
Finally, we demonstrate the application of our method to the key problems of robust
pose graph optimization. In the next chapter, we will demonstrate another important

application of these tools and ideas to semantic SLAM.
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Chapter 4

Robust object-level semantic SLAM

As mentioned in Section [2.5.1], landmark-based SLAM hinges critically on data asso-
ciation, the ability to recognize previously mapped landmarks. Unfortunately, achiev-
ing consistent data association over long periods of operation, while vital for reliable
robot navigation in the operational regime as “time goes to infinity,” is far more diffi-
cult than short-term data association. In this regime a robot’s pose uncertainty may
grow large enough that many landmarks present reasonable loop closure candidates.
Consequently, data association is a major failure mode of modern navigation systems.
Indeed “regardless of the type of data association employed, it is highly likely that
if an estimation technique fails, the blame can be squarely placed on bad data as-
sociation” [8, p. 154]. For this reason, any mechanism by which we can associate
landmarks uniquely is of interest.

Recently, advances in the capabilities of learned perception models, especially
deep neural networks, motivate their use for the extraction of “higher-level” feature
descriptors or object-level semantic landmarks for mapping [134]. Not only do these
methods provide additional information that can be used to disambiguate environ-
mental landmarks, but often this information carries with it a semantic interpretation,
grounding the robot map representation in terms of objects. That said, no object de-
tection or recognition model could be expected to offer perfect performance over the
lifetime of a robot. In this chapter, we aim to build semantic map representations

that support robot navigation in a way that does not depend on perfect detection
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and classification of objects; rather we aim to construct estimation procedures that
may leverage the strengths of these methods but are robust to their failures. Solv-
ing this problem requires joint inference of discrete (data associations and landmark
classes) and continuous (robot poses and landmark locations) variables, which is fun-
damentally a computationally hard problem [39, [IT9]. In consequence, approximate

inference methods which remain computationally tractable in application are needed.

To that end, this chapter makes several contributions. First, we show that under
common assumptions on the factorization of the posterior over robot and landmark
states, the (latent) discrete association variables are conditionally independent, mak-
ing ezact elimination possible [28]. Viewed through this lens, we show that prior work
on approximating sum-mixtures of Gaussians in SLAM using maz-miztures [105] in
fact arises directly from (exact) max-product elimination of discrete variables. More-
over, this suggests that the max-mixtures approach is best interpreted not simply as
a computationally tractable approximation to a sum-mixture (in the setting of non-
linear least-squares optimization for SLAM), but rather as an exact representation
of the factor graph model resulting from analytic elimination of association vari-
ables. Crucially, this perspective enables a natural generalization the max-mixtures
approach to the setting where landmark states and measurements are jointly discrete
and continuous (possessing a semantic class as well as a position), which is necessary
for its application to semantic SLAM problems. Our prior work [43, 46] made use
of similar ideas, but it was motivated as a computationally efficient approximation
which was primarily heuristic in nature. This chapter gives an exposition from the
perspective of inference in graphical models that makes the exactness of our approach
obvious. Second, we consider sum-product elimination of discrete variables. We give
a derivation of an expectation-maximization procedure for optimizing the resulting
marginal posterior over the remaining variables. This approach is formally equivalent
to that of Bowman et al. [18] and admits a convenient representation in terms a single
factor definition. Both of these approaches are capable of incorporating association
uncertainty in the setting of discrete-continuous landmark states in a computationally

tractable manner. Finally, we observe that the resulting MAP inference problem of
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interest is defined with respect to a hybrid model (including continuous states like
robot poses and landmark locations, as well as discrete landmark class variables), and
so to implement these ideas we employ the DC-SAM library and solver developed in
the previous chapter. We provide experimental validation of these approaches us-
ing real data from a mobile robot and the KITTI dataset [50], demonstrating their

practicality in real applications.

4.1 Problem statement

4.1.1 Semantic SLAM with unknown data association

Formally, we define the semantic SLAM problem in 3 dimensions as the inference
of robot poses X £ {z; : 7; € SE(3), i = 1,... N}, and semantic landmarks ¢; £
(E?,E;), j = 1,...,M comprising the set L, where each landmark is split into a
(continuous) geometric component ¢; € R? and a (discrete) semantic class component
5 € C from a known set of class labels C 2 {1,...,C}, given a set of measurements
Z. This fits the general landmark-based SLAM paradigm outlined in Section m
Moreover, this is a natural generalization of a purely geometric landmark-based SLAM

approach; by simply taking C = 1, we recover the usual geometric formulation. This

corresponds to the following maximum a posteriori (MAP) inference problem:

X*, L* = argmax p(X, L | Z). (4.1)

X,L

When associations between measurements and map landmarks are unknown, they
must also be inferred during navigation. In particular, suppose there are K land-
mark measurements with unknown associations. We introduce the discrete associa-
tion variables D £ {dj : d, € N<js, k= 1,... K}. Modifying the problem in to

accommodate these data association variables, we obtain:

X*, L*, D* = argmax p(X, L, D | Z). (4.2)
X,L,D
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Unfortunately, solving this problem to guaranteed global optimality is in general
intractable, requiring search over all O(M¥) possible data association hypotheses.
In SLAM, we are primarily interested in the robot and landmark states, X and L;
we are typically not concerned about the optimal assignments to the data association
variables themselves. Instead, then, we can consider eliminating the data association

variables. to form the following marginal MAP inference problem:

X* L* = argmax [max p(X,L,D| 7). (4.32)
X,L D
X*,L" = argmax » " p(X,L,D| Z), (4.3b)
XL G
P(X,LIZ)

where here we are using the notation X+, L™ to distinguish the marginal MAP from
the MAP estimate itself, X*, L*. It would seem that we have not gained anything
computationally by eliminating data association variables. Indeed, it is straightfor-
ward to verify that is essentially a reorganization of terms in . Moreover,
the marginal distribution p(X, L | Z) =), p(X,L,D | Z) in is non-Gaussian,
even when the measurement models themselves are corrupted by Gaussian noise. As
we will show in Section the key advantage of variable elimination in this setting

derives from the conditional independence structure of the graphical SLAM problem.

4.1.2 Problem Statement

The semantic SLAM formulations described in Section are broad enough to
encompass a number of NP-hard problems (see, e.g. |75, 119]). In fact, the seman-
tic SLAM process is made even more challenging by the issue of false positives, i.e.
sensor measurements that occur with no landmark present, as well as the crucial
fact that the number of landmarks M is not known beforehand; rather, it typically
grows during navigation. Consequently, we assume access to a reasonable landmark
hypothesis set Hy C L for a landmark measurement Z. Beyond this assumption, the

methods we present are not restricted to a particular class of measurement model.
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In this chapter, however, our application of interest is semantic SLAM, and we will
consider sensor configurations giving access to odometry measurements between sub-
sequent keyframes, geometric landmark measurements, and semantic landmark mea-
surements. All measurements of continuous variables are assumed to be corrupted
by additive Gaussian noise. We divide measurements into two types, corresponding
to odometry factors 1;; € Fo between poses z; and z; and (ambiguous) landmark
measurements ¢;;, € Fr between a pose x;, all landmarks in the hypothesis set H,
and a discrete association variable dj,, giving the MAP inference problem:

max H Vij (@i, x5) H Gir(xi, Hi, di). (4.4)

X,L,D
Yi; EFO PikEFL

We will also consider the maximum marginal estimation problem from (4.3b]), which

can be written in terms of the above factorization as:

r)n(foXZ I viiz) [ dulen M dy). (4.5)

D ¢i;eFo bik€FL
Since our focus is primarily on the issue of data association, which involves only land-
mark measurements, it will be convenient throughout to abuse notation slightly by
defining a single function summarizing the joint likelihood of all odometry measure-

ments:

v(X) & ] vl w)), (4.6)

Yij€Fo
which do not depend on the associations. We assume that the landmark measurement
model factors into conditionally independent geometric and semantic components

given the association variable: i.e.:

o(x,H,d) = p(Z | z,H,d)

(4.7)

where zf and z¢ are the geometric and semantic components of the measurement,

respectively. The geometric measurement likelihood p(z* | z, ¢9) is taken to be Gaus-
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Figure 4-1: Conditional independence of data associations. In the setting of
landmark-based SLAM, data associations which are conditionally independent can
be analytically eliminated. The hypothesis sets H; consist of sets of landmarks po-
tentially associated with the k-th measurement. The associations d; and ds are con-
ditionally independent given the values assigned to the variables in their separators
sets S, = Hy, U x; (respectively z;).

sian with mean g(z, ¢9) for some (typically nonlinear) measurement model g. In this
work, we will consider object detections providing access to range and bearing to a 3D
point (comprising the geometric measurement 2°), so g gives the range and bearing
between a pose and a 3D point, and an object class label z°. Finally, we assume
that odometry measurements and geometric landmark measurements are corrupted
by additive Gaussian noise, and we assume knowledge of the misclassification statis-
tics of the detector, p(Z¢ | £5), i.e. the probability that the detector outputs z¢ given
knowledge of the true class of the corresponding landmark, which could be expressed,

for example, in terms of the C' x C' confusion matrix for an object classifier.

4.2 Approach

The following subsections discuss the application of two approaches to eliminate data
association variables in the SLAM problem. Specifically, we describe maz-product
elimination to solve the MAP inference problem described in , and sum-product
elimination to address the marginal MAP inference problem in . In the latter
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case, we describe an inference approach based on the expectation-maximization al-
gorithm (c.f. [18]). As we will show, each approach can conveniently be represented
in terms of a factor amenable to optimization using standard tools (e.g. GTSAM

[39]). Finally, we provide an approach for determining a reasonable hypothesis set in

Section [4.2.3

4.2.1 From MAP inference to max-product elimination

First, we consider directly solving the MAP inference problem in . It is clear that
naive search over all possible combinations association decisions would be intractable
even for modestly sized problems. However, we can simplify the problem considerably.
Since the association variables D do not appear in the odometry factors within the

MAP inference problem (4.4), we can immediately rewrite the optimization as:

D n)l(flL}(lp(X) max fiklg[& fir(xi, Hie, di) | (4.8)
where p* is the posterior probability attained by the MAP estimate. Now, each factor
fir depends only on z;, Hj, and di. This is a direct consequence of the conditional
independence structure exposed by the factor graph representation, and is depicted in
Figure [d-1] Moreover, each association variable dj, is involved with ezactly one factor
fir- Therefore, the maximum over D of the product of all f;; is attained simply as

the product of the maxima taken separately over each dy:

pr=maxy(X) [] max fix(w, M, d). (4.9)

X,L
fik€FL

Counsider the factor defined as:
fi™ (i, He) £ max fi (i, Hy, d). (4.10)

We immediately observe that this factor does not depend on any particular assign-

ment to the association variable. Rather, for any assignment to a pose and the
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set of landmarks in the hypothesis set, it determines the optimal association for a
particular measurement. The quantity in equation is commonly known as a
“max-marginal” in the setting of probabilistic graphical models [75]. In the setting
of pose-graph SLAM where the measurement models of interest are restricted to be
relative measurements between robot poses, an analogous expression has appeared
before as a max-mixture [I05], where it was observed that when the component mea-
surement models appearing in the inner maximization are Gaussian, the result can
serve as an approximation of a sum-mixture of Gaussians. However, we now demon-
strate the following remarkable fact: if we eliminate association variables according to
, the resulting optimization problem over the remaining variables is equivalent
to the original MAP inference problem. Substitution of into reveals:

p=max o) [T o 1o, (411)
¢mmEF,
Moreover, given solutions (X*, L*) to this problem, we can recover the corresponding

association variables dj, as follows:
dy = argmax fip(z}, Hj, d). (4.12)
d

To see this, form the problem:

p*:mgX1/J<X*) H flk(x:7ﬂzvdk)

fik€Fr

= o(X)max [ fulei 1, di) (4.13)

fik€Fc
- 1/}<X*) H max fzk(l’:, /Hz’ dk)?
d
fik€Fc
where in the last line we have used again the conditional independence of each dy
to factor the maximization into a set of subproblems in one-to-one correspondence
with the landmark measurement factors. Finally, we observe that the maximum in

(4.13) is specifically attained when each dj takes on the optimal assignment for its
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individual subproblem. By construction, dj as defined in (4.12)) is this assignment.
The equivalence of the problems in (4.4]) and (4.11)) is significant. By virtue of this

equivalence, we have not skirted the issue of the computational hardness of rendering
global solutions to the problem in (4.4]). However, this change has the profound benefit
of making the problem amenable to standard (computationally efficient) optimization
techniques based on local search. Furthermore, since the geometric part of each
component factor in is assumed to be Gaussian with respect to a nonlinear
measurement model, we can specifically make use of SLAM solvers tailored toward
incremental nonlinear least-squares applications (e.g. iISAM2 [70]). Finally, from an
optimizer X*, L*, of , we can recover the corresponding optimal associations
(and, in the event that X* and L* happen to be global optimizers of , then the
triple (X, L*, D*) will likewise be a globally optimal solution to (4.2])).

4.2.2 From marginal MAP inference to sum-product elimina-

tion

In this section we consider the marginal MAP inference problem in (4.5). The same
reasoning we applied in the previous section can be used to show that the sum-
marginal distribution on the right-hand side of equation (4.5) admits a similarly

convenient decomposition whereby the max operator is replaced by a summation:

p* = maxy(X) f]; ; Fir(i, o, die), (4.14)
where p* is the optimal value for the sum marginal optimization problem. However,
the factor representation analogous to the one in (corresponding the summa-
tion terms appearing in (4.14))) is non-Gaussian, prohibiting the direct application
of nonlinear least-squares optimization approaches to solve (4.5)) (remedying this was
the motivation for the original max-mixtures approach of Olson and Agarwal [105]).
Rosen et al. [120] provide an algebraic reduction that can transform any positive,

bounded factor into a representation suitable for nonlinear least-squares optimiza-
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tion. Pfeifer et al. [108] subsequently applied this technique in the setting of point
set registration. However, we consider an alternative approach based on expectation-
maximization which admits a straightforward implementation and, as we will show,

optimizes the same objective.

Originally applied to semantic SLAM by Bowman et al. [I8], the expectation-
maximization approach iteratively optimizes the marginal likelihood (or, in this case,
the marginal posterior) in equation in a two-step procedure [42]. In the ex-
pectation step, a distribution over the hidden (data association) variables given the
remaining variables is computed, allowing the formation of a lower-bound on the
marginal likelihood (or posterior). In the subsequent maximization step, the lower
bound function is maximized with respect to the remaining variables (poses and
landmarks). Given an iterate X, L, the factor representation for this approach can

be expressed as:

Foan M) 2 T Fa My, d)™, (4.15)
deH
where A
wy 2 f(@,#,d) (4.16)

- Saen @ H &)
In our setting, the apparent benefit of this representation, as opposed to the exact
formulation, is that the negative logarithm of this factor now takes the form of a
weighted combination of the (negative logarithm of the) original factors. This makes
implementation straightforward when one already has access to the component mea-

surement models.

4.2.3 Computing candidate association hypotheses

Thus far, we have assumed knowledge of a collectively exhaustive set of data associa-
tion hypotheses for each measurement. In practice, however, a reasonable hypothesis
set must be determined as a robot collects new measurements. In this section, we
suggest a method for determining candidate hypotheses based on the commonly em-

ployed Laplace approzimation for the robot’s belief state at a particular time (e.g.
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as in [69, 129]). At a high-level, our approach is to first compute a linear Gaussian
approximation to the true (non-Gaussian) posterior belief at a linearization point
corresponding to our current state estimateﬂ We will use this approximation to esti-
mate the marginal probability of a landmark measurement Z under each possible data
association hypothesis (i.e. one hypothesis per mapped landmark), given all previous
measurements, denoted Z\{g}. A threshold on the marginal measurement probability
determines whether a measurement corresponds to a previously mapped landmark,
or a new landmark. If the measurement is determined to be a new landmark, it is
added to the map, otherwise all landmarks passing the gate threshold are considered
as potential hypotheses and incorporated into the factor graph as a mixture factor.
Consider a single object detection measurement Z = (Z¢ Z”) consisting jointly
of geometric and semantic information obtained from a pose x. We will make the
posterior marginal approximation p(z, ¢ | Z\{g}) ~ p(x, 0° | Z\{g})p(fc | Z\{g}) From
this, and the factored measurement model, the likelihood of the form p(Z | d, Z\{g})

can be broken into the product of separate semantic and geometric likelihoods:
p(Z% 2 | d=j, Znz) =p(E°| - )p (2| -). (4.17)

Each term on the right-hand side can be expanded as follows into the summation

over landmark classes:

p(Z° | d=j,Zyy) = Zp(ic | E)p(E | Zygzy), (4.18)
5

and integral over robot pose and landmark location:

p(Z | d=j,2\z) = / D (2| @, 08) pla, 8 | Zygzy). (4.19)

x, b
]

LAs one might expect, a unimodal Gaussian distribution may quite poorly capture the true
non-Gaussian belief. While this is computationally convenient, it is a challenge of applying these
methods. Methods for global loop closure, e.g. incorporating finer-grained descriptors of objects,
can improve the robustness of this process, but do not address the key difficulty in representing the
non-Gaussian belief.

2The motivation for this approximation is that recovering the exact hybrid marginal will generally
be intractable.
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The marginal distribution p(z, ¢/ | Z\{g}) is generally non-Gaussian, and in turn this
integral is typically intractable. Consequently, we approximate the marginal distri-
bution via the Laplace approximation centered at the current estimate. Specifically,
letting x denote the state vector obtained by concatenating an estimate of the robot
pose x and landmark position €§-’ , we obtain an approximating distribution which is

Gaussian with mean % and covariance L£
p(@, 00| Zyzy) = N(%,5). (4.20)

With this approximation, all of the terms in the integral are Gaussian and we obtain

(as in [69)]):

P(E | d = j, D)~ —me H1OO I (4.21)
’27TR]‘|
The covariance R, is defined as:
) dg|"
R 2 a—i Aza—i 4T, (4.22)

where 3 is the block joint covariance matrix between pose x; and candidate landmark
position 6]'0- , 0g/0x is the Jacobian of the measurement function, and I" is the covari-
ance of the geometric measurement model. This result, combined with the expression
in gives the marginal likelihood in that we normalize to compute data
association probabilities. Those landmarks for which this approximate marginal com-
putation is greater than a pre-determined threshold will be considered hypotheses.
In particular, with the observation that the squared-error term [|g(X) — 2°||%, is a
chi-squared distributed random variable, we base the acceptance criterion around a

chi-squared test 2 having a number of degrees of freedom equal to the measurement

3 Approximate marginals of this form have the additional benefit that they are readily accessed
using existing computational tools for SLAM like iISAM and iSAM2 [70] in libraries like GTSAM
[38]. To recover the marginals for both the discrete and continuous states, we employ the approach
described in Section @ as implemented in DC-SAM.
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dimension and with confidence level «, giving:
—2logp(2° | d = j, Zy(zy) + l9(%) — 2*[I%, < X2 (4.23)

where the factor of 2 appropriately scales the log probability of the semantic mea-
surement component to match the geometric component ﬁ The expression in equation
can be intuitively thought of as an adaptive chi-squared test on only the ge-
ometric measurement component. It is clear that if the semantic measurement and
landmark class agree perfectly we have p(Z° | - ) = 1, and therefore (4.23) reverts
to a standard chi-squared test with statistic x2 on the geometric measurement. In
the usual event where the semantic measurement and landmark class disagree some-
what, we have: p(z° | - ) < 1 which makes the test in (4.23)) equivalent to a more
stringent chi-squared test on the geometric measurement. This satisfies expectations:
if the class measurement and the landmark class disagree, we require a commensu-
rate increase in the probability of the geometric measurement in order to accept an
association.

Finally, in practice, we may also want to consider a “null-hypothesis” where the
measurement is assumed to be a false-positive detection and has no correspondence
with a known landmark. We can account for this possibility by placing a prior
weight on a null-hypothesis component factor, which is implemented as a Gaussian
component with large variance for the geometric part and a uniform distribution over

landmark classes for the semantic part.

4.3 Experimental results

We compared variable elimination approaches for data association in two ways: First,
in results presented in Section [£.3.1], we consider artificial semantic SLAM tasks using

data obtained during indoor navigation with an MIT RACECAR Vehicleﬂ equipped

4More precisely, while a factor of % appears in the logarithm of the probability of a geometric
measurement in , the test statistic for geometric measurements appearing in is twice
this value, so we scale the log probability of the semantic measurement accordingly.
Shttps://mit-racecar.github.io/
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only with a ZED stereo camera [I]. We simulated semantic SLAM tasks using April-
Tag fiducials [87, [143], which allow us to generate synthetic object class measurements
(for any number of classes up to the total number of AprilTags in the environment)
based on the known unique ID number of each tag. Knowledge of the AprilTag ID
also allows us to construct baseline solutions with known data association. We added
odometry noise and random misclassifications at varying rates in order to assess the
robustness of each approach, the results of which are summarized in Section [4.3.1]
Second, in Section we evaluated each approach on real stereo image data from
the KITTI dataset [56], [57] using detections of cars for loop closures.

We implemented our approach in C++ using the discrete-continuous smoothing
and mapping (DC-SAM) library [47], which makes use of iSAM2 [70] and the GTSAM
[38] library for optimization and covariance recovery. Experiments were run on a single
core of a 2.2 GHz Intel i7 CPU. We use evo [61] for trajectory evaluation.

In all of the experiments, we compare three approaches to data association: naive
maximum-likelihood association, denoted (ML), max-product elimination (or, max-
mixtures), denoted (MM), and expectation-maximization, denoted (EM)[f| For all of
the approaches other than maximum-likelihood, we also examine the addition of a

null hypothesis decision (denoted +NH where applicable).

4.3.1 MIT RACECAR dataset

We collected roughly 25 minutes of data during indoor navigation with the MIT
RACECAR mobile robot platform (depicted in Figure over a roughly 1.08 km
trajectory. We sampled AprilTag [87, 143] detection keyframes at a rate of 1 Hz
resulting in 702 observations of 262 unique tags. The dataset itself consists of several
repeated traversals of a single large loops with occasional 180 degree turns. The
nature of this dataset makes the problem of data association a significant challenge,
particularly for closing large loops and dealing with hairpin turns.

Odometry was obtained using the ZED stereo camera visual odometry [I]. The

6The expectation-maximization approach is equivalent to the approach of Bowman et al. [I§]
applied in our problem setting.
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Figure 4-2: MIT RACECAR platform. The MIT RACECAR mobile robot plat-

form used in the experiments. Figure adapted from [I0].

use of AprilTags allows us to obtain a baseline solution with known data associations.
We assigned semantic labels to each AprilTag as the true tag ID modulo C for a C-
class semantic SLAM problem. While AprilTags provide full rotation and translation
estimates for tag poses in the camera frame, we do not expect this in general of
neural network-based object detectors. Consequently, we consider only the range and
bearing to AprilTags in our semantic SLAM system.

We examined the performance of each system across two parameters of inter-
est: noise in odometry measurements and misclassification rate. To simulate added
noise in odometry measurements, we perturb the existing measurements with additive
Gaussian noise. We restrict this addition of noise to measurements of planar motion
and sample from a distribution with standard deviations equal to 1072 times the
base model standard deviation. We examine the performance of each estimator while
varying the scale applied to these models; that is, for an added noise “scale” of 10, the
standard deviation of the augmented noise is 1072 times that of the base model. To
simulate misclassification, we randomly perturb classifications with a particular prob-
ability. That is, for a misclassification rate of 0.1, there is a 90% chance of observing

the true landmark class and a 10% chance that it will be misclassified. In the case of
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odometry noise and misclassification rate, we assume access to an accurate model of
the noise characteristics. As a consequence, for a two-class classification problem (as
we consider here), a 50% misclassification rate causes the system to discard semantic
information entirely. Quantitative results for these experiments are summarized in
Figure [4-3] The corresponding qualitative results are provided in Figure The
difficulty of this dataset is reflected by the relatively poor estimation accuracy of all
of the methods, and is a consequence of the fact that accurate state estimation on this
particular dataset requires reliably closing large loops. Since loop closure is deter-
mined by a measurement gate, this places the burden of robustness predominantly on
the gating procedure. Since our approach does not address the issue of maintaining
multiple hypotheses about the existence of a new landmark for a particular measure-
ment (only the identity of a landmark correspondence once existence is established)
we cannot recover from situations where the system creates spurious landmarks (this
is true of all the methods we tested). Moreover, if the correct landmark hypothesis is
not in the set of correspondences for a given measurement, the best we can hope for in
the current system is that the measurement will be rejected as null. Furthermore, the
specific gating procedure we employ here makes use of a unimodal Gaussian approx-
imation of a posterior distribution that we do not expect to be truly unimodal. The
quality of this approximation relies on the posterior distribution being concentrated
around the current estimate of the map and robot trajectory. Of course, if the cur-
rent estimate is wrong (e.g., as is common when information thus far is insufficient
to distinguish between multiple landmark hypotheses) this can produce a mislead-
ing representation of the solution uncertainty. The performance of the expectation
maximization approach, which effectively combines the impact of multiple hypotheses
(including the null hypothesis) on the state uncertainty in a weighted average, seems
to offer the most reliable performance using this gating procedure. Overall, our re-
sults suggest that the determination of new landmarks (i.e. the gating procedure) is
an important challenge for future work on these systems. Better posterior approxi-
mations, such as the non-Gaussian formulation in [45] may help to some degree, but

ultimately if we are to rely on a plausibly inaccurate state estimate for any decisions
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Figure 4-3: MIT RACECAR dataset trajectory error. Error distribution for
the MIT RACECAR dataset experiments. (a) Error as a function of added odometry
noise. (b) Error as a function of misclassification rate.

whatsoever, it seems that we must have the ability to “revert” those decisions. Doing
this in a computationally tractable manner is an open question, though heuristics
have been produced in certain problem domains that may present initial steps in this

direction (see, e.g., [84]).

4.3.2 KITTI datasets

We also evaluate our approach on stereo camera data from the KITTI dataset odom-
etry sequences [56]. In our experiments, we use the YOLO object detector [114]. We
threshold the confidence of the detector at 0.8, using detections of cars as landmarks.
We use VISO2 stereo odometry for visual odometry [55]. We estimate the range and

bearing to cars as the median range and bearing to all points that project into the
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bounding box for a given car detection.

In this demonstration, we consider semantic SLAM using stereo camera data from
the KITTI dataset [57]. We sample keyframes every two seconds, using VISO2 [55] to
obtain stereo odometry measurements and YOLO [I14] for noisy detections of cars.
We estimate the range and bearing to an object’s position as that of the median
depth point projecting into a detected object’s bounding box. Using DC-SAM, we
are able to compute solutions to this problem online.E] Table gives a quantitative
comparison of our approach with the odometric estimate from VISO2. Our approach
substantially improves upon the translational errors of the odometric estimate and
additionally enables the estimation of discrete landmark classes. Figure gives a
qualitative example demonstrating landmark class inference, in which we distinguish

between cars and trucks as object-level landmarks.

4.4 Summary

In this chapter we presented an approach for semantic SLAM with unknown data
association based on exact elimination of the association variables. We showed that
for typical graphical models encountered in semantic SLAM, the association variables
can be analytically eliminated. Inference over the eliminated graphs is equivalent to
the original MAP (or marginal MAP) inference problem, but can be performed effi-
ciently using local search techniques; in particular, incremental nonlinear least-squares
solvers [70] as employed within our hybrid solver and library DC-SAM. Since our ap-
proach requires that we provide a suitable hypothesis set, we also gave a method based
on a chi-squared hypothesis test to produce such a set. Our method for hypothesis
set determination requires only the ability to compute approximate marginals over
robot poses and landmark states, which are readily available using off-the-shelf tools
like GTSAM [3§]. Finally, we demonstrated our approach on semantic SLAM prob-

lems using real data from a mobile robot with simulated (noisy) object detections

"We run our solver on an Intel i7 2.6 GHz CPU and YOLO on an NVIDIA Quadro RTX 3000
GPU.
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Figure 4-5: Qualitative object-level SLAM results for KITTI dataset 00.
The output of our system (using the max-mixture model) is depicted above for a
semantic SLAM problem on the KITTI dataset using observations of both cars and

trucks. Cars are depicted in blue with trucks depicted in red. The estimated vehicle
trajectory is shown in green.
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obtained using fiducials as well as on the KITTI dataset using real object detections
from YOLO [114].

With the recognition that even in cases where the cost functions to be opti-
mized in the outlier free setting are convex, robust variants of these cost functions
(e.g. the truncated least-squares (TLS) cost function) are nonconvex, methods have
been proposed based on graduated nonconvezity (GNC), which initially solve a con-
vex problem and aim to gradually recover the nonconvex, outlier-robust cost [145].
These approaches may improve the sensitivity of nonconvex robust estimation meth-
ods to initialization. To date, these methods have not been applied in the setting
of landmark-based data association, though likewise it may be possible to consider

similar techniques in the setting
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Chapter 5

Performance guarantees for spectral

initialization in rotation averaging

and pose-graph SLAM

In Chapters [3|and [4 we considered problems of MAP inference in hybrid probabilistic
models. The DC-SAM algorithm we developed in Chapter [3] is based on iterative
improvement of an initial assignment to the states we aimed to estimate. However, we
set aside the application-specific issue of actually obtaining that initial iterate. In this
chapter, we examine the issue of initialization for robot perception problems (defined
on continuous states): rotation averaging (RA), where all states and measurements
are elements of the special orthogonal group; and pose-graph SLAM, where all states
and measurements are elements of the special Euclidean group. The fact that the
states in these problems are constrained to lie in sets which are nonconvex makes
these estimation problems inherently nonconver, with many bad local minima that
can entrap the local optimization methods commonly applied to solve them. The
performance of standard SLAM and RA algorithms thus crucially depends upon the
quality of the estimates used to initialize the local search. In consequence, a great
deal of prior work has been dedicated to the development of initialization techniques
(see Carlone et al. [30] for a review). While many of these techniques often work

well in practice, the fact that they are obtained as heuristic approximations makes it
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difficult to ascertain what specific features of SLAM or RA problems determine their
performance. As a result, it is difficult to say when, or under what conditions, these

techniques can be reliably deployed.

We propose a simple spectral initialization method for pose-graph SLAM and ro-
tation averaging that we prove enjoys explicit performance guarantees. To the best of
our knowledge, these are the first concrete guarantees to appear in the literature for
any initialization technique adapted to these applications. Our analysis gives direct
control over the estimation error of a spectral initialization in terms of the spectral
properties of the measurement network[l] This allows us to control the distance from
the spectral estimate to the global minimizer of the estimation problem; this is crit-
ical for ensuring that the initialization lies in the locally convex region around the
global minimizer, and therefore that this minimizer can be recovered by a subsequent
local refinement (see Figure . Our proof of this result relies on new estimation
error bounds for the global minimizers (i.e. the mazimum likelihood estimators) of
SLAM and rotation averaging problems, which are likely to be of independent inter-
est. Algorithmically, our approach only requires computing the first few eigenpairs
of a symmetric matrix, which can be achieved using any off-the-shelf implementa-
tion of the Lanczos method (e.g. the MATLAB eigs command). Our empirical
results on both synthetic data and standard pose-graph SLAM benchmarks demon-
strate that the spectral estimator typically performs far better than our worst-case
analysis suggests, achieving solution quality and computation times competitive with
state-of-the-art approaches. Beyond its utility as an initialization method for , our
results show that spectral relaxation provides an inexpensive method for rotation
averaging and pose-graph optimization in its own right (i.e. without the need to per-
form subsequent nonconvex optimization or semidefinite relaxation) that attains an
asymptotic error bound comparable to the (globally optimal) estimator, and provides

near-optimal estimates in practice.

'Recent work has identified spectral properties of measurement networks as key quantities con-
trolling the performance of estimators for these problems, though this connection (particularly in
the context of SLAM) remains under-explored (see [I19] for a recent review).
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Figure 5-1: Comparing true, optimal, and initial rotation estimates. We are
interested in bounds on the deviation of an initial estimate R() from the (latent)
ground truth R and the globally optimal solution R*.

5.1 Problem formulation

We consider the problem of synchronization over the SO(d) group: this is the problem
of estimating n unknown values Ry, ..., R, € SO(d) given a set of noisy measurements
Rij of a subset of their pairwise relative rotations R;; £ R; 1Bj The problem of
SO(d)-synchronization captures, in particular, the problems of rotation averaging
and, under common modeling assumptions, pose graph optimization (as we show in
Problem [5{ and equation (PGO))), where the variables of interest are the orientations
of a robot (or more generally, a rigid body) at different points in time (see, for
example Grisetti et al. [59]). This problem possesses a natural graphical structure
G £ (V,€), where nodes V correspond to latent variables R; € SO(d) and edges
(i,7) € € correspond to (noisy) measured relative rotations R;; between R; and R;.
In particular, for the problem of rotation averaging, we adopt the following standard
generative model for rotation measurements: For each edge (i,7) € g , we sample a

noisy relative measurement R;; according to (cf. [T} [I18]):

Rij = Ry R;;, Rj; ~ Langevin(Ig, k). (5.1)

15

2As a brief notational remark: in the previous chapters we typically made use of d to indicate a
discrete state we would like to estimate. Here, there are no discrete states, and d is simply used to
denote the dimension of the problem under consideration (e.g. d = 2 for two-dimensional rotation
synchronization, and so on).
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Given a set of noisy pairwise relative rotations f%ij sampled according to the generative
model (5.1)), a maximum likelihood estimate R* € SO(d)" for the latent rotational

states Ry, ..., R, is obtained as a minimizer of the following problem [41, 118§]:

Problem 3 (Maximum likelihood estimation for rotation averaging).

I ij R'_RiRi' 7. 5.2

S kR - R (5:2)
(i,9)€€

For pose-graph SLAM (SE(d)-synchronization), we adopt the following generative

model for rotation and translation measurements: For each edge (i, j) € £ , we sample

a noisy relative measurement #;; = (f;;, Ri;) € SE(d) according to:

Ri; = RyR;;, Rf; ~ Langevin(Ig, xij) (5.3a)

YR

R v g

where z;; = 2, lgj = (tij, R;j) is the true relative transformation from z; to ;. Under
this noise model, a maximum likelihood estimate x* € SE(d)" for the latent states

Z1,...,T, is obtained as a minimizer of the following problem [I1§]:

Problem 4 (Maximum-likelihood estimation for SE(d) synchronization).

Inin > kil Ry = RiRjll3 + migllty — t: — Ritigl3. (5.4)
Ri€S0(d) (i-j)€E

Note that under these modeling assumptions, both pose-graph optimization and
rotation averaging can be written as particular instances of the following general

optimization problem:

Problem 5 (Quadratic minimization over SO(d)").

*= min tr(QR' .
pr= i r(@QR'R), (5.5)

where @ € Sym(dn), Q = 0.
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Algorithm 1 Spectral initialization procedure

Input: The data matrix Q from (RA)) or (PGO))
Output: A spectral initialization R® )
1: function SPECTRALINITIALIZATION(Q)

2: Compute orthogonal set of eigenvectors ® corresponding to the d smallest
eigenvalues
of Q. > Solve Problem @
fori=1,...,ndo

3

4 Set REO) + Ms(®;), where ®; is the i-th (d x d) block of ®. > Deﬁnition
5: end for

6 return R

7: end function

Specifically, the problems of rotation averaging (RA) and pose-graph optimization
(PGO) in Problems [3{ and {4} respectively, can be parameterized in terms of the fol-
lowing data matrices:

Q=L(G")+Q, (PGO)

where L(@”) is the rotation connection Laplacian and QT is a data matrix comprised
of translation measurements. For the purposes of the approach presented in this
chapter, the specific structure of Q is not important; we require only that in the
noiseless case, where @ = @, we have RT € ker(Q), where R is the set of (latent)
ground-truth rotational states, and L(G?) = 0 and Q™ > 0 (see [1I8, Appendix
C.3| for a detailed analysis of the noiseless case). The interested reader may refer to

Appendix for a complete description of these data matrices.

5.2 Spectral methods for initialization

The nonconvexity of the SO(d) constraint renders Problem [p| computationally hard to
solve in general. However, we can generate a tractable spectral relaxation of Problem

by relaxing the SO(d) constraint as follows:
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Problem 6 (Spectral Relaxation of Problem [f).

YeRaxan (5.7)

Here, the SO(d) constraint on each (d x d) block of the variable Y has been replaced
by the (weaker) constraint that YYT = nl,, ie. the matrix Y is comprised of d
orthogonal rows of norm y/n. While the relaxed constraints in are still quadratic
and nonconvex, in Appendix we prove that a feasible point Y is a (global)
minimizer of Problem [f]if and only if its rows are comprised of d pairwise orthogonal
(and appropriately scaled) eigenvectors corresponding to the minimum d eigenvalues
of (). Therefore, one can recover an optimizer Y* of Problem@via a simple eigenvector
computation ]

For the noiseless problem parameterized by (), the relaxation in Problem |§| is
exact in the sense that R = GY* for some G € O(d)[| This follows from the fact
that, by construction, the ground truth rotations R' lie in ker(@)ﬁ and RR" = nly
since R € SO(d)™. Likewise, since R is a minimizer of the relaxed problem and is in
the feasible set for the Problem [5] it is also a minimizer for Problem |5l In general,
however, we do not expect such a nice correspondence to hold. Indeed, a minimizer of
Problem [ need not even be feasible for Problem [}, since the former is obtained from
the latter by relaxing constraints. Therefore, we must in general round the estimate
provided by the spectral relaxation to obtain an approximate solution R® € SO(d)"

in the feasible set of Problem [5] The following definition makes this precise.

Definition 2 (Projection onto SO(d)). For X € R¥? the projection IIs(X) of X

onto SO(d) is by definition a minimizer of the following:

min [|X — G||F. (5.8)
GesO(d)

3This justifies our referring to Problem |§| as a “spectral” relaxation of Problem

4The spectral relaxation in Problem EI, like Problem [5, admits infinitely many solutions: if Y* is
a minimizer of Problem @, then any GY*,G € O(d) is also a minimizer.

SWe refer the reader to [118, Appendix C.3| for detailed analysis of the noiseless case.
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A minimizer for this problem is given in closed-form as [62, [139]:
Ms(X)=U=V". (5.9)
where X = ULV is a singular value decomposition, and = is the matrix:

—_
—
—

Diag (1,1,det(UVT)). (5.10)

In the context of subsequent derivations, it will be convenient to “overload” this

Rdx dn

rounding operation to Y &€ as follows:

Ms(Y) = (s(Vh), ..., Ts(Y,)), (5.11)

where Y; € R™4 are the n blocks of Y.

Therefore, we can obtain an approximate solution to Problem [5| from a minimizer
Y* of the relaxation in Problem@ as R £ TIg(Y™*). Our overall spectral initialization

procedure is summarized in Algorithm

5.3 Main results

This section presents our main results, which are three-fold: First, we provide a
bound on the error of our spectral initialization R(®) with respect to the ground-truth
rotations K. Second, we give a new bound on the error of globally optimal solutions R*
with respect to R: this bound differs from prior work (e.g. Preskitt [110], Rosen et al.
[118]) in that it is defined with respect to the orbit distance ds on SO(d)". Previous
work used the orbit distance dp on O(d)™ due to mathematical convenience; however,

" since this

the estimation error one considers in application is actually over SO(d)
is the domain on which the estimation problem is defined. Combining these results,
we obtain an upper bound on the SO(d) orbit distance between an initial guess R(®)
and a globally optimal solution R*. Our analysis gives direct control over the mutual

deviation between the three quantities of interest: R(®, R*, and R as a function of
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the noise magnitude. We conclude with additional remarks about computing these
bounds for practical SLAM scenarios and a few straightforward adaptations of the

main results.

Recall from Problem [0] that an estimate ® is a minimizer of Problem [fif and only
if it is composed of a (suitably scaled) orthogonal set of eigenvectors corresponding to
the minimum d eigenvalues of @, and that in the noiseless case a minimizer is given
by R. Since a spectral initialization R(®) is obtained as the projection of a solution
® of Problem @ onto SO(d)", we can bound its estimation error by first bounding
the deviation of ¢ from R, then bounding the additional error incurred by projecting
onto SO(d)".

We will begin our presentation of the main results by giving a bound on the
deviation of a solution ® of Problem |§| from the ground truth R via the Davis-Kahan
Theorem [147], a classical result relating the perturbation of a matrix’s eigenvectors
under a symmetric perturbation to the magnitude of that perturbation. Here, we
take () to be the matrix under consideration, and define the perturbation AQ =
Q- Q). The following lemma, which we prove in Appendix gives the desired

characterization:

Lemma 3. Let ® be a minimizer of Problem [0l and R be the corresponding ground

truth rotations. Then:

2V 2dn||AQ||2
Air1(Q)

do (R, ®) < (5.12)

Lemmal[3|provides control over the deviation of an “unrounded” solution ® from the
ground truth R. The second technical ingredient we require is the following simple

bound controlling the maximum distance between a matrix X and its projection

[Is(X) onto SO(d):

Lemma 4. Let X € R™? qnd R € SO(d). Then:

Is(X) — Rl|p < 2[|X — R||F. (5.13)
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Proof.

Ms(X) = Rl[p = [s(X) = X + X — R|[p (5.14)
< Ms(X) = X|[p + X = Rl|r (5.15)
< 2[|X = RllF, (5.16)

where the last inequality follows from the fact that II5(X) is a minimizer over SO(d)
of the distance to X with respect to the Frobenius norm, and that, by hypothesis,
R € 50(d). O

Lemma [ provides a straightforward approach for converting a bound expressed
in the O(d)™ orbit distance to one expressed in the SO(d)™ orbit distance. In turn,
we obtain the following theorem, which we prove in Appendix

Theorem 5. Let ® be a minimizer of Problem @ and R®) = Tg(®) € SO(d)" be
the corresponding spectral initialization. Finally, let R € SO(d)™ be the set of ground

truth rotations in Problem @ Then the estimation error of R©) satisfies:

4v/2dn|| AQ| |2
de(R, ROy < 21w li2
s(B, )< Air1(Q)

(5.17)

The bound gives a direct (linear) relationship between the magnitude of the
perturbation A( and the worst-case error of a spectral estimate. Moreover, Theorem
implies that ds(R, R®) — 0 as AQ — 0. That is to say, as the measurements
approach their noiseless counterparts, our spectral estimate approaches the ground
truth.

Next, we address the issue of furnishing a bound on ds(R, R*). The following
theorem, which we prove in Appendix [A.3.2] gives the desired result:

Theorem 6 (Bounding the estimation error for R*). Let R* be a minimizer of Prob-
lem [4 and R be the set of ground-truth rotations. Then the estimation error of R*

satisfies:
8V dnl||A
8.1 < =3

(5.18)
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To the best of our knowledge, Theorem [0] is the first result to appear in the liter-
ature that directly controls the estimation error of the maximum likelihood estimate
R* over SO(d)™ specifically. Prior work considered the estimation error over O(d)"
[0, B0, 118]. In our application, however, we are specifically concerned with the esti-
mation error over SO(d)"; as one can see from inspection, this is the domain on which
Problem [5|is defined. Thus, the SO(d)™ orbit distance corresponds to the actual error

one would obtain in practice.

While Theorem [5| establishes error bounds for the spectral estimator, when viewed
as an initialization method, the distance between the initial guess R and the globally
optimal solution is the primary concern. A corollary to Theorems [5] and [6], allows us

to control ds(R(®, R*) in terms of the noise matrix AQ. We have:

Corollary 7. The orbit distance between the initialization R©*) and a globally optimal

solution R* satisfies:

8 + 4v/2)Vdn||AQ||2
Aar1(Q) '

ds(R©, R*) < ( (5.19)

These bounds provide a clear relationship between the spectral properties of @
and AQ and the deviation between a spectral estimator R(®), maximum likelihood
estimator R*, and the ground-truth R. An important consequence of these bounds is
that as AQ — 0, we have (at least) linear convergence of the estimation error for both
the spectral estimator and the maximum likelihood estimator to zero. This, in turn,
guarantees that AQ — 0 implies R*, R® — R (up to symmetry), which is what we

would expect.

In practice, however, we do not have access to (). This presents some difficulty
in the computation of AQ and A\g;1(Q). Fortunately, the noiseless rotation matrices

admit a description in terms of quantities that are typically assumed to be known.

In particular, we have [I18, Lemma 8|:

Aa1(L(GP)) = Ao (L(W7)), (5.20)
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where L(WP*) is the Laplacian of the rotational weight graph. Now, L(W*) depends
only on the concentration parameters x;; attached to each edge, which are generally
assumed to be known a priori from the noise models and . In the rotation
averaging case, we have () = L(G"), and therefore the denominator Ag11(Q) is readily
available as Ao (L(W?)), the algebraic connectivity of the rotational weight Laplacian.

In the case of pose-graph SLAM, where the matrix ) contains the translational
terms )7, we can use the fact that Q = L(G?)+ Q7 is the sum of positive-semidefinite
matrices (see Rosen et al. [I18, Appendix C.3|), s0 Ag41(L(G”)) < Aa1(L(G?)+Q7) =
Ai+1(Q). In particular, the (weaker) bounds obtained by substituting A\;;1(Q) with

Aa+1(L(G?)) in (5.17) and (5.18) hold.

Moreover, a common SLAM initialization technique is that of rotation only ini-

tialization — i.e., to compute the initializer R(®) using only the relative rotation mea-
surements [30]. This can have computational advantages in practice since L(G?) is
generally sparse; the same cannot be said for the pose-graph SLAM data matrix Q, as
it arises via analytic elimination of the translational states, in which case the resulting
data matrix Q is formed as a (dense) generalized Schur complement [I18, Appendix
BJ. Interestingly, for pose-graph SLAM, a spectral initialization R© computed using
the eigenvectors of L(G?) (i.e. ignoring Q7) attains the bound:

_ 4N/ 2dn|| AL(G?)||

ds(R, R") < N1 (L(G?))

(5.21)

This bound holds by the same reasoning as Theorem [5, but with the consideration
that RT € ker(L(G”)).

As a final consideration, typically we do not have access to AQ (if we did, we
could recover the true data matrix () as Q- AQ). In consequence, we need a method
to estimate the likely magnitude of the noise in a given application. One way of
achieving this is via simulation from the generative model, given a measurement

network and associated measurement precisions.ﬂ This, in turn, gives a sample set

6Simulating measurements in the case of pose-graph SLAM requires knowledge of the ground-
truth translation measurement scale, which is typically also unavailable in practice. However, the
rotation-only initialization bound (5.21) applies in general and depends only upon the rotation
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Figure 5-2: Spectral relaxation produces high-quality initializations. Qual-
itative comparison with the globally optimal solution suggests that the spectral re-
laxation produces estimates that are very close to optimal for a variety of SLAM
benchmark datasets. The corresponding quantitative comparison is given in Table

from a distribution over the bounds (5.17)), (5.18])), and (5.19).

5.4 Experimental results

In this section, we compare the bounds in Theorem 5] to the actual estimation error in-
curred by the spectral initialization and globally optimal pose-graph SLAM solutions
on a variety of simulated problem instances, as well as benchmark SLAM problems.
In Section [5.4.1] we construct synthetic pose-graph SLAM scenarios for which the

ground-truth poses are known. Since the bounds we have presented depend upon

measurements, which can be simulated to produce an empirical distribution over the spectral norm
of the perturbation matrix.

96



knowledge of the noise magnitude ||AQ||2 and the spectral gap of the true data ma-
trix (), which are unknown in practice for pose-graph SLAM, our first set of empirical
results shed light on the behavior of these worst-case bounds (as well as the actual
error realized by different estimators) as we vary the noise parameters controlling
the generative model . In Section , we evaluate the performance of spec-
tral relaxation as a practical initialization method in the context of 3D pose-graph
SLAM applications. We show that, consistent with our results on synthetic data,
the spectral initialization method offers high-quality initial solutions for pose-graph
optimization, and in particular, that the inclusion of translational measurements sig-
nificantly improves the quality of the spectral estimator versus the common approach
of using exclusively rotational measurements.

The spectral initialization method was implemented in C++ using Spectra to
efficiently solve large-scale eigenvalue problems [I12]. Computation of the bounds in
Section[5.4.1jwas performed in MATLAB using eigs. All experiments were performed
on a laptop with a 2.2 GHz Intel i7 CPU. Where (verified) globally optimal solutions
were needed, we used the C++ implementation of SE-Sync [118]. We also provide
results using the well-known chordal initialization method [90], which relaxes the
feasible set of Problem |5/ to R™?" with the constraint that R\” = I, for which the

solution can be obtained by solving a linear system.

5.4.1 Evaluation on synthetic data

The bounds presented in our analysis depend upon knowledge of the noise magnitude
|AQ||2, which is unknown in practice. In light of this fact, we examine empirically
the behavior of the bounds as a function of the noise parameters using synthetic
data. Specifically, we use the Cube dataset |29 [I18|, which consists of a set of
vertices (poses) organized in a three-dimensional cube, with s vertices per dimension.
Consecutive poses have an “odometry” edge between them, and loop closures are
sampled randomly from the remaining edges with probability prc. Measurements
are generated by randomly sampling from the generative model with fixed noise

parameters x and 7 for all measurements. Beyond providing access to the ground-
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Figure 5-3: Cube experiments. Example ground-truth realization of a synthetic
Cube dataset [29] 118| with s = 10 vertices per side and p;,c = 0.1. The robot’s
trajectory is shown in blue with loop closures shown in red.

truth rotations, this setup allows us to compare the worst-case bounds with empirical
performance in noise regimes well outside the range typically encountered in real

SLAM scenarios. A sample configuration for the Cube dataset is provided in Figure

5-31

Influence of noise parameters on performance bounds: In Figure 5-4 we
study the performance of the spectral initialization approach across a variety of noise
configurations. In each case, we provide the worst-case bounds and along
with the empirical error of the different estimators under consideration. In Figure
[b-4a], we sample Cube problem instances with logarithmically spaced values of k while
fixing the other parameters: 7 = 150 (corresponding to an expected RMS error of
0.14 m), prc = 0.2, and s = 10. In Fig. , we fix K = 10° (corresponding to
an expected RMS error of approximately 0.1°), prc = 0.25 and s = 10 and sample
problem instances with logarithmically spaced translation concentration parameter

7. In Fig. m, we fix k = 10°, 7 = 150, s = 10 and vary prc from 0 to 1.
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Figure 5-4: Influence of dataset parameters on the performance bounds for
We examine empirically the change in the theoretical
bounds and as well as the estimation error of several pose-graph opti-
mization estimates while varying (a) the rotation concentration parameter x, (b) the
translation concentration parameter 7, (c¢) the probability of a loop closure pre, (d)

the Cube experiments.
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Across a wide range of concentration parameters, the spectral initializations at-
tain very similar error to the global optimizerﬂ In particular, their error often im-
proves upon the worst-case bounds and by orders of magnitude. This
is consistent with earlier observations of qualitatively similar bounds for phase syn-
chronization [I10]. Moreover, in applications of rotation averaging and pose-graph
optimization, previous work has shown that the maximum likelihood estimator often
attains expected error close to the Cramér-Rao lower bound (see [I7] for rotation
averaging and [33| for pose-graph optimization). The behavior of the bounds when
varying the translation concentration parameter in Figure [5-4b| is counterintuitive:
while the spectral estimator improves with increasing 7, the bound suggests the op-
posite worst-case behavior. It seems the form of the bounds we derive (including the
translational terms) is not refined enough to capture this behavior, and this certainly
warrants further investigation. With this exception, the bounds seem to accurately
capture the behavior of the actual estimation error, though they appear to be quite
loose with respect to the empirical performance attained by all of the methods. This
suggests that, while the bounds we have produced identify key quantities of inter-
est for accurate state estimation and have “reasonable” asymptotic performance (i.e.
linear convergence as ||AQ|l2 — 0), there is significant room for improvement in the

bounds themselves.

Dependence on problem dimensionality: Due to the explicit appearance of
the problem dimension n in the bounds , , and , it is interesting to
consider how the number of rotations to be estimated affects these bounds. In Figure
5-4d we fix Kk = 10°, 7 = 150, prc = 0.2 and vary the number of vertices in the
Cube dataset. Indeed, we find that the behavior of the worst-case bounds suggests
an unfavorable scaling in the problem dimension: at s® = 8 vertices, the worst-
case bound overestimates the true error by approximately an order of magnitude; at

s3 = 1000, it overestimates the true error by approximately 3 orders of magnitude. It

"R* is the maximum likelihood estimator—the optimal point estimate given the data. Since there
is noise in the data, it is conceivable that the maximum likelihood estimate might actually be farther
away from the ground truth than a “suboptimal” estimate, which we observe in Fig.
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is unclear, at present, whether it is possible to remove this dependence on the problem
dimension. A more sophisticated analysis considering the specific structure of these

matrices (as defined in Appendix [A.1)) may yield more refined bounds.

5.4.2 Evaluation on standard SLAM benchmark datasets

In these experiments, we consider evaluation of the spectral initialization method on
several standard SLAM benchmark datasets. Figure provides a qualitative com-
parison of three techniques for initialization: odometry only (i.e. composing mea-
surements between consecutive poses), the proposed spectral initialization approach,
and the globally optimal solution. We observe that spectral initialization provides
solutions that visually resemble the globally optimal solution. Table gives our
quantitative results. For each method, we provide the computation time, objective
value, and number of iterations required for a Riemannian trust-region (RTR) opti-
mization method to converge to a critical point when using that initialization. With
the exception of odometry-only initialization, all of the methods considered enabled
the recovery of (verifiably) globally optimal solutions; that is, these initialization
methods coupled with standard local optimization techniques recovered globally op-
timal solutions without the need to explicitly solve a large-scale semidefinite program.

Both of the spectral methods (using the “full” pose-graph optimization data ma-
trix  and the “rotation only” version using only L(ép)) provide estimates com-
petitive with the state-of-the-art chordal initialization method, generally attaining
near-optimal objective Values.ﬁ Interestingly, in their work, Moreira et al. [95] found
that the rotation-only spectral estimator attains a higher cost on the Sphere dataset
than alternative methods, as we do here; however, when we include the translation
measurements, we find that this discrepancy disappears. Similarly, the chordal esti-
mator also performs well on this dataset, despite the fact that, like the rotation-only

spectral initialization, it does not make use of translational measurements.

80ur current implementation is aimed at recovering high-precision eigenvector estimates, rather
than expedient computation. Despite this, spectral initialization is often faster than the chordal
approach, though occasionally this added precision leads to longer computation times than would
be necessary to obtain a good estimate, e.g. on the Garage dataset.
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Dataset Odom.  Chord. Spec. (RO) Spec. Glob. Opt.

Iter 65 6 8 4
Sphere Cost 1.14 x10° 1971.17 5594.19 1742.75 1687
Time (s) - 0.707 0.602 0.779
Iter 32 5 5 4
Torus Cost 3.87 x10% 24669.2 25833.2 24272.7 24227
Time (s) - 1.316 1.501 1.199
Iter 30 6 6 4
Grid Cost  1.97 x10'° 87252 86966.1 84486.4 84320
Time (s) - 8.747 18.806 0.25
Iter 1028 3 4 4
Garage Cost 2.31 x10°  1.42 3.215 2.7 1.26
Time (s) - 0.201 0.136 25.7

Table 5.1: Standard SLAM benchmarks Objective value (cost) attained and com-
putation time required for each initialization method on several SLAM benchmarks.
We also report the number of iterations (Iter.) required for a Riemannian trust-
region optimization method to converge to a critical point. Note that the reported
computation time is only the time required to compute the initialization. Proposed
approaches are bold.

5.5 Summary

In this chapter we presented the first initialization methods equipped with explicit
performance guarantees adapted to the problems of pose-graph SLAM and rotation
averaging. Our approach is based upon a simple spectral relaxation of the esti-
mation problem, the form of which permits us to apply eigenvector perturbation
bounds to control the distance from our initialization to both the (latent) ground-
truth and the global minimizer of the estimation problem (the maximum likelihood
estimate) as a function of the measurement noise. Consistent with recent comple-
mentary work on information-theoretic aspects [17, B3], [72] and global optimization
methods [41], 51, 118 for SLAM and RA, our bounds highlight the central role that
spectral properties of the measurement networkﬂ play in controlling the accuracy of
SLAM and RA solutions. Finally, we show experimentally that our spectral estima-
tor is very effective in practice, producing initializations of comparable or superior

quality at lower computational cost compared to existing state-of-the-art techniques.

9Specifically, the smallest nonzero eigenvalue A\g11(Q), which can be thought of as a generalization

of the algebraic connectivity of the classical graph Laplacian.
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Chapter 6

Spectral measurement sparsification

for pose-graph SLAM

However, as we aim to scale SLAM algorithms to the setting of “lifelong” autonomy,
particularly on compute- or memory-limited platforms, a robot must be able to de-
termine what information should be kept, and what can safely be forgotten [119]. In
particular, in the setting of graph-based SLAM and rotation averaging, the number
of edges in a measurement graph determines both the memory required to store a
robot’s observations as well as the computation time of algorithms employed for state
estimation using this measurement graph.

While there has been substantial work on the topic of measurement pruning (or
sparsification) in lifelong SLAM (e.g. [22, 23, 68, [76], [77]), most existing methods rely
on heuristics for sparsification whereby little can be said about the quality of the sta-
tistical estimates obtained from the sparsified graph versus the original. Recent work
on performance guarantees in the setting of pose-graph SLAM and rotation averaging
identified the spectral properties—specifically the algebraic connectivity (also known
as the Fiedler value)—of the measurement graphs encountered in these problems to
be central objects of interest, controlling not just the best possible expected perfor-
mance (per earlier work on Cramér-Rao bounds [17, 33], [72]), but also the worst-case
error of estimators [48], [I18]. These observations suggest the algebraic connectivity as

a natural measure of graph quality for assessing SLAM graphs. This motivates our
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use of the algebraic connectivity as an objective in formulating the graph sparsification

problem.

Specifically, we propose a spectral approach to pose graph sparsification which
maximizes the algebraic connectivity of the measurement graph subject to a constraint
on the number of allowed edges.ﬂ As we discuss, this corresponds to E-optimal design
in the setting of pose-graph SLAM [I11]. This specific problem turns out to be an
instance of the mazimum algebraic connectivity augmentation problem, which is NP-
Hard [96]. To address this, we propose to solve a computationally tractable relaxation
and round solutions obtained to the relaxed problem to approximate feasible solutions
of the original problem. Relaxations of this form have been considered previously;
in particular Ghosh and Boyd [58] developed a semidefinite program relaxation to
solve problems of the form we consider. However, these techniques do not scale to the
size of typical problems encountered in graph-based SLAM. To this end, we propose
a first-order optimization approach that we show is practically fast for even quite
large SLAM problems. Moreover, we show that the dual to our relaxation provides
tractable, high-quality bounds on the suboptimality of the solutions we provide with

respect to the original problem.

In summary, we present an approach for pose graph sparsification by maximizing
the algebraic connectivity of the measurement graph, a key quantity which has been
shown to control the estimation error of pose-graph SLAM solutions. Our method,
based on convex relaxation, is simple and computationally inexpensive, and admits
formal post hoc performance guarantees on the quality of the solutions it provides.
In experiments on several benchmark pose-graph SLAM datasets, we show that our
approach quickly produces high-quality sparsification results which retain the con-
nectivity of the graph and better preserve the quality of SLAM solutions compared

to a baseline which does not consider graph connectivity.

1Our method is related to, but should not be confused with, spectral sparsification [130]. Similar
to spectral sparsification, we aim to sparsify graphs in a way that preserves their spectral properties.
However, our method differs in that we focus only on the algebraic connectivity, whereas traditionally
spectral sparsification aims to preserve the entire graph Laplacian spectrum.
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6.1 Problem formulation

We consider graph sparsification in the setting of pose-graph SLAM. Recall that pose-
graph SLAM is the problem of estimating n unknown values z;, ..., x, € SE(d) given
a subset of measurements of their pairwise relative transforms z;;. We adopt the
same generative model for rotation and translation measurements as in the previous
chapter (given in eq. ) In turn, we obtain the maximum-likelihood estimation
procedure given in Problem [4]

In the last chapter, we showed that the smallest (nonzero) eigenvalue of the ro-
tational weight graph Laplacian L(W?) (eq. (A.1b])) controls the worst-case error of
solutions to Problem [} this is the algebraic connectivity (or Fiedler value) of the
graph having nodes in correspondence with robot poses z; and edge weights equal
to each k;;. The corresponding eigenvector attaining this value is called the Fiedler
vector. The method we present in this chapter is applicable to any graph G with
Laplacian L, but because of the specific connections between the rotational weight
graph and performance of estimators for SLAM we will take L = L(W?*) in all appli-
cations we consider here.

The Laplacian of a graph has several well-known properties that we will use here.
The Laplacian L of a graph can be written as a sum of the Laplacians of the subgraphs
induced by each of its edges. A Laplacian is always positive-semidefinite, and the “all
ones” vector 1 of length n is always in its kernel. Finally, a graph has positive algebraic
connectivity Ao(L) > 0 if and only if it is connected ]

It will be convenient to partition the edges as &€ = £° U E°, £°NEC = () into a
fized set of edges £° and a set of m candidate edges £°, and where L° and L are
the Laplacians of the subgraphs induced by £° and £¢. For our purposes, the sub-
graph induced by £° on V will typically be constructed from sequential odometric
measurements (therefore, |£°| = n — 1), but this is not a requirement of our general

approachE] It will be helpful in the subsequent presentation to “overload” the defini-

2More specifically, the number of zero eigenvalues of a Laplacian is equal to the number of
connected components of its corresponding graph.

3In particular, to apply our approach we should select L° and K to guarantee that the feasible
set for Problem [7] contains at least one tree. Then, it is clear that the optimization in Problem [7]
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tion of L(W?). Specifically, let L : R™ — S be the affine map constructing the total

graph Laplacian from a weighted combination of edges in £¢:

Lw) &£ L0+ wili, (6.1)

k=1
where L¢ is the Laplacian of the subgraph induced by edge e, = {ix,jx} of &°.
Our goal in this work will be to identify a subset of £* C £¢ of fixed size |£*| =
K (equivalently, the edge selection w), which maximizes the algebraic connectivity

Ao(L(w)). This corresponds to the following optimization problem:

Problem 7 (Algebraic connectivity maximization).

= max M(L(w
R o
lw| = K.

6.2 Approach

Problem [7]is a variant of the maximum algebraic connectivity augmentation problem,
which is NP-Hard [96]. The difficulty of Problem [7] stems, in particular, from the
integrality constraint on the elements of w. Consequently, our general approach will be
to solve a simpler problem obtained by relaxing the integrality constraints of Problem
[7, and, if necessary, rounding the solution to the relaxed problem to a solution in the
feasible set of Problem [7] In particular, we consider the following Boolean relazation

of Problem [T

Problem 8 (Boolean Relaxation of Problem [7)).

max Ag(L(w))
we[0,1]™ (63)
1Tw =K.

will always return a connected graph, since Ao(L(w)) > 0 if and only if the corresponding graph is
connected. Note that this condition is always easy to arrange: for example, we can start with L° a
tree, as we do here, or (even more simply) take L° to be the zero matrix and simply take K > n —1.
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Algorithm 2 MAC Algorithm

Input: An initial iterate w
Output: An approximate solution to Problem

1: function MAC(w)

2. w +FRANKWOLFEAC(w) > Solve Problem
3: return [I(w) > Round solution; eq. (6.7)
4:

end function

Algorithm 3 Frank-Wolfe Method for Problem

Input: An initial feasible iterate w
Output: An approximate solution to Problem
1: function FRANKWOLFEAC(w)
2 fort=0,...,7 do
3 Compute a Fiedler vector y* of L(w)
4: VF(W) + y Ly k=1,...,m > Eq. (6.5)
5: sy < argmax, s' VF(w) > Prob. [0} eq.
6:
7
8

a<—2/(2+1) > Compute step size
w—w+a(s —w)
end for
9: return w
10: end function

Relaxing the integrality constraints of Problem [7| dramatically alters the difficulty
of the problem. In particular, we know (cf. [58]):

Lemma 8. The function F(w) = X\o(L(w)) is concave on the set w € [0,1]™, 1Tw =

K.

Consequently, solving Problem 8] then, amounts to maximizing a concave function
over a convex set; this is in fact a convex optimization problem (one can see this by
simply considering minimization of the objective —F(w)) and hence globally solvable
(see, e.g. [II, 19]). Since a solution to Problem |8 need not be feasible for the
original problem, we then round solutions to the relaxed problem to their nearest

correspondents in the feasible set of Problem [7]

6.2.1 Solving the relaxation

There are several methods which could, in principle, be used to solve the relaxation in

Problem . For example, Ghosh and Boyd [58] consider solving an equivalent semidef-
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inite program. This approach has the advantage of fast convergence (in terms of the
number of iterations required to compute an optimal solution), but can nonetheless
be slow for the large problem instances (m > 1000) typically encountered in the
SLAM setting. Instead, our algorithm for mazimizing algebraic connectivity (MAC),
summarized in Algorithm , employs an inexpensive subgradient (more precisely, su-
pergradient) approach to solve Problem , then rounds its solution to the nearest
element of the feasible set for Problem [A]

In particular, MAC uses the Frank-Wolfe method (also known as the conditional
gradient method), a classical approach for solving convex optimization problems of
the form in Problem [§| [11]. At each iteration, the Frank-Wolfe method requires (1)
linearizing the objective F' at a particular w, (2) maximizing the linearized objective
over the (convex) feasible set, and (3) taking a step in the direction of the solution to
the linearized problem. The remainder of this section gives a detailed exposition of
our adaptation of the Frank-Wolfe method to the problem of algebraic connectivity
maximization, which is summarized in Algorithm [3]

The Frank-Wolfe method is particularly advantageous in this setting since the
feasible set for Problem [§]is the intersection of the hypercube with the linear subspace
determined by 17w = K (a linear equality constraint). Consequently this problem
amounts to solving a linear program, which can be done easily (and in fact, as we show,
admits a simple closed-form solution). In particular, the direction-finding subproblem

for the Frank-Wolfe method is the following linear program:

Problem 9 (Direction-finding subproblem). Fix an iterate w € [0,1]™, 1Tw = K.

The direction-finding subproblem is to find the point s solving the following linear

program:
max s'VF(w),
s€[0,1] (64)
1's = K.

In order to compute the linearized objective in Problem [J] we require a supergradi-

ent of the original objective function (in the usual case where F' is differentiable at w,

4Supergradients are simply the concave analogue of subgradients; i.e., the tangent hyperplane
formed by any supergradient of a concave function F' must lie above F.
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this is simply the gradient of F'). It turns out, we can always recover a supergradient
of F' at a particular w in terms of a Fiedler vector of L(w). Specifically, we have the

following theorem (which we prove in Appendix :

Theorem 9 (Supergradients of F(w)). Let y*(w) be any eigenvector of L(w) corre-
sponding to Ao(L(w)). Then:

1s a supergradient of F' at w.

Therefore, supergradient computation can be performed by simply recovering an
eigenvector of L(w) corresponding to Ag(L(w)).

Problem @ is a linear program, for which several solution techniques exist [I1].
However, in our case, Problem [ admits a simple, closed-form solution s* attaining

its optimal value (which we prove in Appendix :

Theorem 10 (A closed-form solution to Problem [9). Let S*, |S*| = K be the set
containing the indices of the K largest elements of VF(w), breaking ties arbitrarily

where necessary. The vector s* € R™ with element k given by:

1, keS8*,

0, otherwise,
is an optimizer for Problem[9.

In this work, we use a simple decaying step size a to update w in each iteration.
While in principle, we could instead use a line search method |11, Sec. 2.2]), this
would potentially require many evaluations of F(w) within each iteration. Since
every evaluation of F(w) requires an eigenvalue computation, this can become a

computational burden for large problems.
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In the event that the optimal solution to the relaxed problem is integral, we ensure
that we have also obtained an optimal solution to the original problem. However,
this need not be the case in general. In the (typical) case where integrality does not
hold, we project the solution to the relaxed problem onto the original constraint set.
In this case, an integral solution II(w) can be obtained by rounding the largest K

components of s to 1, and setting all other components to zero:

AL if wy, is in the largest K elements of w,

0, otherwise.

In general, the Frank-Wolfe algorithm offers sublinear (i.e. O(1/T) after T itera-
tions) convergence to the globally optimal solution in the worst case [50]. However,
in this context it has several advantages over alternative approaches. First, we can
bound the sparsity of a solution after T iterations. In particular, we know that the
solution after T iterations has at most KT nonzero entries. Second, the gradient com-
putation requires only a single computation of the minimal 2 dimensional eigenspace
of an n xn matrix. This can be performed quickly using a variety of methods (e.g. the
preconditioned Lanczos method). Finally, as we showed, the direction-finding sub-
problem in Problem@ admits a simple closed-form solution (as opposed to a projected
gradient method which requires projection onto an ¢;-ball). In consequence, despite
the fact that gradient-based methods may require many iterations to converge to
globally optimal solutions, high-quality approximate solutions can be computed fast
at the scale necessary for SLAM problems. As we show in the following section, our
approach admits post hoc suboptimality guarantees even in the event that we termi-
nate optimization prematurely (e.g. when a fast but potentially suboptimal solution
is required). Critically, these suboptimality guarantees ensure the quality of the so-
lutions of our approach not only with respect to the relaxation, but also with respect

to the original problem.
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6.2.2 Post hoc suboptimality guarantees

Algorithm [3| admits several post hoc suboptimality guarantees. Let p* be the optimal
value of the original nonconvex maximization in Problem [7] Since Problem [ is a
relaxation of Problem [7] in the event that optimality attains for a vector w*, we

know:

F(II(w")) < p" < F(w"). (6.8)

Therefore, the suboptimality of a rounded solution II(w*) is bounded as follows:
p" = F(l(w)) < F(w") = F(II(w")). (6.9)

Consequently, in the event that F(w*) — F(II(w*)) = 0, we know that II(w*) must

correspond to an optimal solution to Problem [7]

The above guarantees apply in the event that we obtain a mazimizer w* of Problem
[8l This would seem to pose an issue if we aim to terminate optimization before we
obtain a verifiable, globally optimal solution to Problem |8 (e.g. in the presence
of real-time constraints). Since these solutions are not necessarily globally optimal
in the relaxation, we do not know if their objective value is larger or smaller than
the optimal solution to Problem However, we can in fact obtain per-instance
suboptimality guarantees of the same kind for any estimate w through the dual of
our relaxation (cf. Lacoste-Julien et al. |78, Appendix DJ). Here, we give a derivation

of the dual upper bound which uses only the concavity of F'.

Since F is concave, for any z,y € [0,1]™, 1Tz = 1Ty = K we have:

F(y) < F(z) + (y — ) VF(x). (6.10)
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Consider then the following upper bound:

Fw") < F(@)+ (W —)TVF()

s€[0,1]m 1T s=K

< max  F(@)+ (s —@)'VF(®) (6.11)

= F(Q)—0'"VF(@)+ max s 'VF().

s€[0,1]m,1Ts=K

We observe that the solution to the optimization in the last line of (6.11)) is ezactly
the solution to the direction-finding subproblem (Problem E[) Letting § be a vector

obtained as a solution to Problem [J] at @, we obtain the following dual upper bound:
Fp(@) & F(Q)+ VEW)T (3 — ). (6.12)

Now, from (6.11)), we have Fp(w) > F(w*) for any w in the feasible set. In turn,
it is straightforward to verify that the following chain of inequalities hold for any

estimator @ in the feasible set of the Boolean relaxation:
F(II(w)) < p* < Fp(w), (6.13)
with the corresponding suboptimality guarantee:
p"— F(Il(w)) < Fp(w) — F(II(w)). (6.14)

Moreover, we can always recover a suboptimality bound on @ with respect to the

optimal value F'(w*) to relaxed problem as:

F(w') — F(&) < Fp(@) — F(&) (6.15)

The expression appearing on the right-hand side of (6.15]) is the (Fenchel) duality gap.
Equation (6.15]) also motivates the use of the duality gap as a stopping criterion for
Algorithm [3; if the gap is sufficiently close to zero (e.g. to within a certain numerical

tolerance), we may conclude that we have reached an optimal solution w* to Problem
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(b) Naive baseline.

Figure 6-1: Qualitative results for pose-graph sparsification. Pose-graph opti-
mization results for the Cityl0K dataset with varying degrees of sparsity using (a)
our method and (b) a naive baseline which selects the most certain measurements.
Left to right: 20%, 40%, 60%, 80%, and 100% of the candidate edges.

Dataset | No. of Nodes | No. of Candidate (Loop Closure) Edges
KITTI 02 4661 43
KITTI 05 2761 66
Intel 1728 785
AIS2Klinik 15115 1614
City10K 10000 10688

Table 6.1: Summary of the datasets used in our experiments.

3l

6.3 Experimental results

We implemented the MAC algorithm in Python and all computational experiments
were performed on a 2.4 GHz Intel i9-9980HK CPU. For computation of the Fiedler
value and the corresponding vector, we use TRACEMIN-Fiedler [89, 125]. In all
experiments, we run MAC for a maximum of 20 iterations, or when the duality gap

in equation ([6.15)) reaches a tolerance of 107%.

We evaluated our approach using several benchmark pose-graph SLAM datasets.
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Figure 6-2: Quantitative results for pose-graph sparsification. Pose-graph
optimization results for several benchmark datasets: (a) KITTI 02 (b) KITTI 05,
(c) Intel, (d) AIS2Klinik, and (e) Cityl0K with varying degrees of sparsity (as percent
of candidate edges added). Left to right: The algebraic connectivity of the graphs
obtained by our method versus the naive baseline (larger is better), the objective value
of the maximum-likelihood estimator for each sparsified graph under the original
objective, i.e. with all edges retained (smaller is better; note the log-scale), the
SO(d) orbit distance between a maximum-likelihood estimator computing using the
sparsified graph and a one computed for the graph containing all of the candidate
edges (smaller is better), and the computation time for our approach.
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For each dataset, we use odometry edges (between successive poses) to form the
base graph and loop closure edges as candidate edges. We consider selection of
10%,20%, . ..,100% of the candidate loop closure edges in the sparsification prob-
lem. We present results on five datasets in this document (summarized in Table
. In particular, we consider here the Intel dataset, the City10K dataset, KITTI
dataset sequences 02, and 05, and the AIS2Klinik dataset. The Intel dataset and
the AIS2Klinik dataset are both obtained from real data, while the City10K dataset
is synthetic. The City10K dataset, however, contains far more candidate edges,
and therefore serves as a reasonable “stress test” for the computation time of our
approach. We compare our approach to a naive heuristic method which does not
consider graph topology. Specifically, the naive method selects the edges with the
most confident rotation measurements (i.e. the set of K edges {i, 7} with the largest
rij). This simple heuristic approach serves two purposes: First, it provides a baseline,
topology-agnostic approach to demonstrate the impact of considering graph connec-
tivity in a sparsification procedure; second, we use this method to provide a sparse
initial estimate to our algorithm. For each method, we compare the graph connectiv-
ity (as measured by the Fiedler value) as well as the quality of maximum-likelihood
estimators for pose-graph optimization (i.e. solutions to Problem {]) under the edge
sets selected by each method. We use SE-Sync [118] to compute the globally optimal
estimate of robot poses in each case[]]

Figure gives a qualitative comparison of the results from our approach as
compared with the baseline on the City10K dataset across a range of candidate loop
closures allowed. We observe that even retaining 60% of the candidate edges, the
quality of the results provided by the baseline method degrade significantly compared
to those of the full set of loop closures. In contrast, our sparsification approach leads
to high-quality estimates even with a significant reduction in the number of edges.

For a quantitative comparison of each method, we report three performance mea-
sures: (1) the algebraic connectivity As(L(w)) of the graphs determined by each edge
selection w, (2) the “full” objective value from Problem [ (i.e. keeping 100% of the

5In all of our experiments, SE-Sync returned certifiably-optimal solutions to Problem
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edges) attained by globally optimal solutions to the sparsified problems, and (3) the
SO(d)-orbit distance between the rotational states of a maximum-likelihood estimator
for the sparsified problem and those of a maximume-likelihood estimator for the origi-
nal (full) objective. The SO(d)-orbit distance between two rotational state estimates
is defined as:
ds(X,Y) = min || X —GY||p,
GeSO(d) (6.16)
X,Y € S0(d)",

which can be computed in closed form by means of a singular value decomposition
(see Rosen et al. [I18, Theorem 5]). The “full” objective value attained by solutions
to the sparsified problems serves as one indicator of “how close” solutions to the
sparsified problem are to the MLE for the “full” problem. If the “full” objective value
attained by the MLE for a sparsified graph is close to that of the MLE computed
using 100% of the candidate edges, the MLE for the sparsified graph is likely also
a high-quality solution under the full objective. The SO(d)-orbit distance quantifies
the actual deviation (up to global symmetry) between the estimated rotational states
in each solution. Since the translational states are recovered analytically (per [118]),
this serves as a useful measure, independent of the global scale of the translational
states, of the degradation in solution quality from the “full” MLE as we sparsify the
graph.

Figure summarizes our quantitative results on each benchmark dataset. Our
approach consistently achieves better connected graphs (as measured by the algebraic
connectivity). In most cases, a maximum of 20 iterations was enough to achieve solu-
tions to the relaxation with algebraic connectivity very close to the dual upper bound
(and therefore nearly globally optimal). Moreover, maximum-likelihood estimators
for Problem [4| computed using the sparsified measurement graphs from our method
perform significantly better in terms of their “full” objective value and their deviation
from a MLE computed using all of the measurement edges.

Beyond providing high-quality sparse measurement graphs, our approach is also
fast. For the Intel dataset, all solutions were obtained in less than 250 milliseconds.

Sparsifying the (larger) AIS2Klinik dataset required up to 700 ms, but only around
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100 ms when larger edge selections were allowed, as the duality gap tolerance was
reached in fewer than the maximum allowed iterations of Frank-Wolfe method. The
largest dataset (in terms of candidate edges) is the Cityl0K dataset, with over 10000
loop closure measurements to select from. Despite this, our approach produces near-

optimal solutions in just 2 seconds.

With respect to the suboptimality guarantees of our approach, it is interesting
to note that on both the Intel and Cityl0K datasets, the rounding procedure intro-
duces fairly significant degradation in algebraic connectivity - particularly for more
aggressive sparsity constraints. In these cases, it seems that the Boolean relaxation
we consider leads to fractional optimal solutions, rather than solutions amounting to
hard selection of just a few edges. It is not clear in these cases whether the integral
solutions obtained by rounding are indeed suboptimal for the Problem [7] or whether

this is a consequence of the integrality gap between global optima of the relaxation

and of Problem [71f]

At present we do not have access to an implementation of the D-optimal sparsi-
fication approaches considered in [73]. However, we evaluate our method on similar
(and similarly sized) datasets, and a comparison of the computation times suggests
that our approach compares favorably in computation time and (consequently) the
scale of problems we can consider. For example, Khosoussi et al. |73, Sec. 9.4| report
computation times of “>> 10 minutes” to solve a convex relaxation of the D-optimal
sparsification problem on the Cityl0K dataset (versus ~ 2 seconds per Figure
. In light of this fact, and since both the D-optimality criterion and E-optimality
criterion are essentially variance-minimizing criteria, in the event that one requires
D-optimal designs specifically, an interesting avenue for future work would be to use
our E-optimal designs to supply an initial estimate to, for example, the convex re-
laxation approach of Khosoussi et al. [73]. A detailed empirical comparison of the
impact of different optimal design criteria on the quality of SLAM solutions would

be tremendously helpful for practitioners, and would also be an interesting area for

In general, even simply wverifying the global optimality of solutions to Problem E] is NP-Hard
[96].
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future work.

6.4 Summary

In this chapter, we proposed an approach for pose-graph measurement sparsification
by maximizing the algebraic connectivity of the measurement graphs, a key quantity
which has been shown to control the estimation error of pose-graph SLAM solutions.
Our algorithm, MAC, is based on a first-order optimization approach for solving a
convex relaxation of the maximum algebraic connectivity augmentation problem. The
algorithm itself is simple and computationally inexpensive, and, as we showed, admits
formal post hoc performance guarantees on the quality of the solutions it provides. In
experiments on several benchmark pose-graph SLAM datasets, our approach quickly
produces high-quality sparsification results which better preserve the connectivity of
the graph and, consequently, the quality of SLAM solutions computed using those
graphs. An interesting area for future work is the empirical comparison of different
optimality criteria for the pose graph sparsification problem. Finally, in this work we
consider only the removal of measurement graph edges. For lifelong SLAM applica-
tions, an important aspect of future work will be to combine these procedures with

methods for node removal (e.g. [22) 28] [68]).
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Chapter 7

Conclusion

This thesis considers the development of lifelong and learning-augmented robot nav-
igation systems. It is desired that any such system be both robust and efficient. The
practical limitations of real systems make this a tremendous challenge: often robust-
ness can be achieved at the expense of efficiency and vice versa, but realizing both
simultaneously is necessary for true lifelong autonomy. To this end, this thesis makes
several contributions:

In Chapter 3], we introduce the DC-SAM library and a new optimization approach
for inference in hybrid factor graphs. We demonstrate the utility of the hybrid factor
graph framework for solving common inference problems arising in robot perception,
emphasizing robust models.

In Chapter 4] we leverage the hybrid factor graph representation and DC-SAM
library to combine the (discrete) output of learned object detection and classification
models with (continuous) geometric measurements for estimation. In turn, we present
an approach to robust object-level semantic SLAM which accounts for uncertainty in
semantic predictions and ambiguity in measurement-landmark correspondences.

In Chapter [5], we focus on pose-graph SLAM and ask whether it is possible to pro-
duce an initial guess that achieves provably bounded estimation error and deviation
from the globally optimal estimate. We show that it is possible and present an al-
gorithm based on spectral decomposition that admits formal performance guarantees

on solution quality. In the process, we identify the algebraic connectivity or Fiedler
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value of the measurement graphs arising in SLAM as a key parameter controlling
estimation accuracy.

Finally, in Chapter [6] we consider long-term pose-graph SLAM, where controlling
the computational burden and memory requirements of SLAM requires sparsifying
the measurement graph. Motivated by the insights from Chapter |5, we develop the
MAC algorithm for pose-graph sparsification, which designs sparse pose-graphs by
mazximizing algebraic connectivity. MAC, based on convex relaxation, admits formal

post hoc suboptimality guarantees on the connectivity of the sparse graphs it provides.

7.1 Limitations and Future Work

In retrospect, the central problem of robustness in lifelong robot perception applica-
tions lies not in the particulars of how we perform inference within a given model,
but rather in the unavoidable fact that a robot building a representation of the world
online is necessarily “building the plane while flying it.” That is to say, every robot
perception system to date relies on a set of heuristics that dictate how a model is
constructed as new data is collected. Only once that model is constructed can infer-
ence be performed, whereby we estimate the parameters of the model. It is in those
heuristic procedures that dynamically construct the model that modern perception
systems fail. The position of this thesis is not that we should attempt to avoid such
rules entirely, but rather to enable the design and engineering of perception systems
that make representing ambiguity about the model itself an essential consideration.

This opinion is summarized concisely by the following quote:

Furthermore, I believe systems make irreversible decisions (such as fea-
ture/no feature) too early in the processing of data. The motivation is
usually to reduce the amount of data that need to be processed, but the
results can be disastrous. Methods that postpone irreversible commit-
ments should receive more attention.

Tomés Lozano-Pérez, foreword to Autonomous Robot Vehicles [83]

The problem of efficiency, on the other hand, lies primarily in the difficulty in
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determining “what is important” for the navigation task. Indeed, until relatively
recently, it was not deeply understood what aspects of the SLAM problem control
estimation error (even in the setting where data association is assumed to be known).
In answering this question, the contributions of this thesis point toward spectral
graph theory, which seems to hold important keys to understanding what aspects of
a measurement graph in SLAM control accuracy and therefore what information can
safely be discarded. It is as yet unclear, however, to what extent information should
be discarded (as we do in Chapter [f]) or instead summarized (and if so, how to do it).

It is clear that much work remains to be done on these topics. The following

sections provide some key directions for future work and areas for improvement.

7.1.1 Expressive models and robust inference

The work on hybrid factor graphs presented in Chapter |3| and Chapter |4 opens up
a number of interesting directions for future work. From a modeling standpoint, the
ability to cleanly capture dependencies between discrete or symbolic quantities and
continuous (typically, but not necessarily) geometric quantities makes hybrid factor
graphs a natural representation for many important robot perception problems.

To this end, one path forward involves using these tools to combine the output of
multiple learned models (which may relate discrete quantities, continuous quantities,
or a mixture of both). For example, we may want to combine predictions from an
object classification model, a category-level object shape model, and real 3D obser-
vations from a depth camera. In this way, we could leverage hybrid factor graphs
as a generic representation for fusing real sensor data with predictions from learned
models.

The methods presented in Chapters [3] and [4] are practically fast in part because
they rely on local optimization techniques that may converge to bad solutions if ini-
tialized poorly. This is an important limitation of these techniques that warrants
further investigation. We discuss this issue in detail in Chapter [3] While we consider
the problem of producing “provably good” initial solutions for pose-graph optimiza-

tion in Chapter o], addressing this challenge for general hybrid factor graphs is more
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challenging (and perhaps particular problems can benefit from application-specific
considerations, e.g. additional sources of trusted information, in the same way that
one may often rely on odometric measurements for initialization in short-term SLAM

problems).

7.1.2 Self-supervised and unsupervised learning

One issue left unexplored by this thesis is continual learning, i.e. where a perception
model (such as an object detector) is trained (or refined) online as a robot navigates
through the environment. The ability to perform robust semantic (object-based)
SLAM opens up the possibility of using an optimized map produced by a SLAM
method as a supervisory signal for learning-based perception methods like object
detectors or object pose estimators. While some initial work to this end has begun
[85], this topic remains relatively under-explored.

Beyond self-supervision, we might consider the issue of discovering object cate-
gories in an unsupervised manner. Outside of the work in this thesis, we have made
some of our first steps performing unsupervised multi-robot object category learning
[44]. However, this work did not make use of globally consistent three-dimensional
world models like those produced by SLAM methods, instead discovering object struc-
ture through spatial correlation within images and temporal correlation between sub-
sequent image frames in a video. Combining these ideas with a SLAM method to
leverage 3D structure would be a natural area for future development.

From a tooling perspective, closer integration with tools for machine learning
would be tremendously helpful. Early examples for continuous factor graphs include
Theseus [109] and PyPose [141]. However, to date, not of these tools directly support
working with hybrid factor graphs.

7.1.3 Performance guarantees for robot perception

From our developments in Chapter || it is clear that much remains to be understood

about performance guarantees for robot perception methods. While some recent
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work has pushed this line of research further (e.g. [24]), the topic of performance
guarantees for robot perception still needs to be explored. In the context of the
work presented in this thesis, there are a few next steps. First, the bounds we
present in Chapter 5| rely on knowledge of the actual error in the data in order to
be computed, making them impractical. This could be addressed by considering
the statistics of the measurements as determined by a sensor model (rather than the
specific measurements obtained by the robot). Matrix concentration inequalities (see,
e.g., [137]) are the right mathematical tools for this sort of analysis, and this is an
interesting direction for future developments. Second, the bounds themselves appear
to be (empirically) quite loose in the scenarios we examined. A more refined analysis
(perhaps with less “slack” in the bounds) could be tremendously useful, especially
if it could explain the high-quality results of the spectral and chordal initialization
techniques. Progress in this direction may point to, for example, a statistical regime
in which certain perception problems can be said to be “easier” than others in a formal

mathematical sense.

7.1.4 Efficient inference, compression, and hierarchy

A key limitation of the methods presented in Chapter[0]is that we discard information
during the sparsification process. It stands to reason that perhaps in some cases
we might be able to “compensate” for a discarded measurement in a pose-graph by
strengthening the influence of other available measurements. Spectral sparsification
methods (see, e.g. [130]) allow for the weights of retained edges to be modified (while
provably sparsifying graphs) in a manner that aims to preserve not just the algebraic
connectivity of the graph but the whole spectrum of the graph Laplacian. Since the
spectrum of the graph Laplacian is closely connected to the cost of SLAM solutions
for the corresponding pose graph, these techniques may provide better (“compressed”)
graphs for SLAM than the MAC algorithm. Initial explorations with these spectral
sparsification techniques have been promising, but further development of these ideas
is a priority for future work. Similar spectral techniques have been explored for node

sparsification, but have not yet been applied in the context of SLAM problems; this
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is another interesting area for future research.

While ideas from spectral graph theory have established mathematical links be-
tween graph properties and estimation error for SLAM methods that can be used for
graph sparsification (or “compression”), these methods do not exploit semantics for
the purposes of summarization. A robot equipped with a semantic understanding of
the world could use knowledge of hierarchy to summarize task-relevant information.
For example, a robot may not need to actively update information about the contents
of the inside of buildings while navigating down a street, but once it enters a building,
that data becomes relevant. Hierarchical representations, such as the object-based
representations of Ok et al. [I03], the S-graphs of Bavle et al. [9], or 3D dynamic
scene graphs (e.g., Hughes et al. [66] and Rosinol et al. [I21]) may enable this type of
semantically-informed graph compression. Along these lines, it would be interesting
to consider whether hybrid factor graph models or the DC-SAM tools developed as

part of this thesis may be useful for the development of these technologies.
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Appendix A

Proofs for Chapter

A.1 Structure of the data matrices

In this appendix, we provide the definitions of the various matrices appearing in the
parameterization of the rotation averaging and pose-graph SLAM problems. L(W7)
and L(W?*) denote the Laplacians of the translational weight graph W7 £ (V, €, {7;;})
and rotational weight graph W* £ (V, &, {ki;j}), respectively, with undirected edges
{i,j} € £. These are n x n matrices with i, j-entries:

(

Zeeé(i) Te, 1=,
L<W7)ij =\ i) {Z,j} S g, <A1a>

0, {15} ¢ €,

\

.

Zeeé(i) Ke, =],
L(WF),; = — K, {i,j} €&, (A.1b)

0, {i,j} ¢ E.

\
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L(G*) denotes the connection Laplacian for the rotational measurements, which is a

dn x dn symmetric block-diagonal matrix with d x d blocks determined by:

¢

dz‘p[du 1= ja
L(G*)i; = —liinij, {i,j} €€, (A.2a)

\ded, {i,7} ¢ €,

&2 ke, (A.2D)
)

e€d(i
where 6(i) denotes the set of edges incident to node i. V € R™ % denotes the

(1 x d)-block-structured matrix with (7, j) block given by:

)
Dees—(jy Teles 1= 17,

‘/ij = —Tji{r (j, Z) € g, (A3)

3

01xd, otherwise.
\

Finally, ¥ € SBD(d, n) denotes the symmetric block-structured diagonal matrix given
by:
> £ Diag(%y,...,%,) € SBD(d, n)

izé Z Tefei;r,
e€d(2)

(A4)

where 67 (7) denotes the set of edges leaving node i. With these definitions in hand,

the translational data matrix Q7 can be defined as:

Q=% -VTLW")'V. (A.5)
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A.2 Analysis of the spectral relaxation

A.2.1 Recovering minimizers of Problem [6] as eigenvectors

In this section we derive a closed-form description of the global minimizers Y* of the

spectral relaxation Problem [6] Specifically, we prove the following theorem:

Theorem 11 (Global minimizers of the spectral relaxation). Let A\ (Q) < --- <

Ad(Q) be the d smallest eigenvalues of Q. Then Y* € R 45 o global minimizer of

the spectral relazation Problem [0 if and only if

Vo (1)
Y*=+vn| : | e R&m (A.6)
Vo (d)
where vy, ...,v5 € R™ are a set of orthonormal eigenvectors corresponding to the d

smallest eigenvalues, and o is a permutation. The corresponding optimal value of

Problem 0 1s:

pi =1 MQ). (A7)

Proof. Our approach will be to reduce Problem [6] to an equivalent problem whose

critical points are already well-understood. To that end, let Z £ n=1/2Y T ¢ Rinxd,

so that Y = y/nZT. Substitution into Problem [6] then gives:
pg = min ftr <nC~2ZZT>

ZcRdnxd

(A8)
st. 277 = 1,.

Observe that ZTZ = I, if and only if Z € St(d, dn); therefore, we may in turn rewrite
(A.8)) as the following unconstrained minimization over the Stiefel manifold:

f = mi 2277). A.
s = (nQ (29)

Note that we may now recognize (A.9)) as the minimization of a generalized Rayleigh
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quotient over a Stiefel manifold. This problem has been extensively studied; in par-

ticular, Absil et al. |2 Section 4.8.2] provides an elementary proof that
Z = (z,...,24) € RI"xd (A.10)

is a critical point of (A.9)) if and only if its columns {z;}%, C R are an orthonor-
mal set of eigenvectors for nQ). Moreover, substituting (A.10)) into the objective in
(A.8) and exploiting the fact that {z;}¢, C R are pairwise mutually-orthogonal

eigenvectors, we find that the corresponding objective value is:
d
tr (nQZZT> :nz,ui, (A.11)
i=1

where p; is the eigenvalue corresponding to z;. Since every critical point of
is of the form —, it follows that the global minimizers Z* are precisely
those critical points whose columns are composed of the eigenvectors vy,...,vqy €
R corresponding to the d smallest eigenvalues of Q. Recovering the corresponding

optimal Y* from Z* then gives (A.6)) and (A.7). O

A.2.2 Symmetric perturbations of symmetric matrices

Recall that R and ® are solutions of the noiseless and noisy versions of the spectral
relaxation in Problem [6] In Appendix we showed how these can be directly
obtained from the Stiefel manifold elements giving the d minimum eigenvectors for
their corresponding data matrices. The Davis-Kahan Theorem is a classical result
in linear algebra that measures the perturbation of a matrix’s eigenvectors under a
symmetric perturbation of that matrix [I31]. Therefore, we make use of this theorem
to derive a bound on the estimation error of a spectral estimator as a function of
the noise in the data matrix. In particular, the proof of Lemma [3| (and consequently
Theorem [5)) relies on a particular variant of the Davis-Kahan sin# Theorem [147,
Theorem 2|. Here, we briefly restate the main result of [147] and give a proof of

Lemma 3]
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Theorem 12 (Yu et al. [147], Theorem 2). Let £, ¥ € RP*? be symmetric, with
etgenvalues \y < ... < X\, and 5\1 <...< jxp respectively. Fix 1 <r < s < p and
assume that min(\, — A1, \ep1 — As) > 0, where \g & —oc0 and \py1 = co. Let
d=s—r+1, and let V = (vp, 041, ...,0s) € RP*? and V= (O, Dy, ..., 0s) € RPXE
have orthonormal columns satisfying Xv; = A\jv; and 2@ = j\j@j forg=rr+1,... s.

Then there ezists an orthogonal matriz G € O(d) such that

23/2 min(dV/2||% — 2lop, || — Z|#)

VG-V <
H G ||F - mil’l()\r - /\r—17 >\S+1 - As)

(A.12)

With this result in hand, we are ready to prove Lemma [3]

Proof of Lemma[3. The data matrices Q and () are symmetric dn X dn matrices with
eigenvalues \; < ... < Ay, and 5\1 < ... < S\dn, respectively. From Theorem
we have that the d normalized eigenvectors corresponding to Ay,..., A of @ and
M, ..., Mg are exactly n=Y2RT and n~Y/2®7, respectively. Then, letting r = 1 and

s = d and applying Theorem [12] there exists an orthogonal matrix G € O(d) such

that: Jaald
1 24/2d||Q —
—|®TG = R"|| < 1@ = Qll= (A.13)
vn Aar1(Q) — Aa(Q)
Multiplying both sides of this expression by /n, we have:
2v/2dn||Q —

Aa1(Q) — Aa(Q)

Now, by definition AQ = Q — Q. If we assume G is connected from 118, Lemma §|
we have that A\g41(Q) > 0. Since R € ker(Q), we know that A\;(Q) = 0 and the above

expression simplifies to:

2\/ 2dnHAQH2
M1 (Q)

107G — RT|[p < (A.15)

Taking the transpose of the terms inside the norm gives the desired result. O

Tt is not particularly restrictive to assume that G is connected. In the case that G is not
connected, the estimation problem splits over the connected components of G, and all of our results
hold separately for each connected component.
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A.3 Proof of the main results

In this appendix, we prove the main results, i.e. Theorem[5, Theorem[6], and Corollary

[

A.3.1 An upper bound for the estimation error in Problem [6]

Proof of Theorem[J. To simplify the subsequent derivation, we will assume without

loss of generality that R and ® are the representatives of their orbits satisfying

do(R,®) = |R — ®||r. Recall from the definition of ds(R, R(”) that:

ds(R, RV) = G B - GRO|p. (A.16)

Therefore, we have:

ds(R,R9)? = min ||[R—GRY|%
GeSO(d)

< |R - RO|2, (A.17)
—ZHR s ()%,

where in the last line we have used the fact that R(®) consists of the projections of
individual (d x d) blocks of ® onto SO(d). From Lemma |4} we have that each of the

n summands above satisfies:
IR — Ts(®;)[|7 < 4[| R; — i1 (A.18)

This, in turn, gives a corresponding bound on the summation:

Y IR —Ts(@)[F <4 IR - @ill3
i=1 =1

= 4[R — 2|

(A.19)
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Since, by hypothesis, ® and R are representatives of their orbits satisfying dp (R, ®) =
|R — ®||F, we have:

4R — @|F = 4do (R, ®)*. (A.20)

Applying Lemma [3| we directly obtain:

A 2
1do (R, ®)* < 4(2v/3dn)> S22 (A.21)
Air1(Q)
In summary, we have:
A 2
ds(R, ROY? < 4(2v/2dny J24 (A.22)
Air1(Q)
Taking the square root of both sides of the inequality in the last line gives:
4V 2dn||AQ|2
ds(R,R©V) < —— =<2 A.23
st )< Aa+1(Q) ( )
which concludes the proof. O]

A.3.2 An upper bound for the estimation error in Problem

We begin following the arguments of Preskitt [110, Appendix D.4]. From the opti-

mality of R* we have:

tr(QR"R) = tr(QE"R) + tr(AQE"R)

3 (A.24)

> tr(QR*TR*) + tr(AQR*TR*) = tr(QR*" R").

Since tr(QRTR) = 0, we can rearrange the above expression to obtain:
tr(QR*TR*) < tr(AQR'R) — tr(AQR*TR*). (A.25)
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Using the fact that tr(AQRT R) = vec(R)T(AQ®1I,) vec(R) (and likewise for tr(AQR*T R*)),

we have:

tr(QR*TR*) < vec(R — R)T(AQ ® 1) vec(R + R*)

< [[vec(B — R)[|2[|AQ @ L |2 vec(R + R7)||
’ ’ ’ (A.26)
= [|R = R*|[r|AQ2]| B + R*[|r

< 2Vdn||R - R*||r|AQ]l2.

In order to lower-bound the right-hand side of (|A.26]) in terms of the estimation error

ds(R, R*), we will make use of the following technical lemma of Rosen et al. [I1§]:

Lemma 13 (Lemma 11 of Rosen et al. [I18]). Let R € O(d)™ C R and further-
more let M = {WR | W € R4} C R be the subspace of matrices with rows

contained in image(R"). Then

Projy : R — image(R")

1 (A.27)

Projy(r) = —R" Rz
n

is the orthogonal projection onto image(R") with respect to the y inner product, and

the map

Proj,, : R>" — M
. (A.28)

Proj,,(X) = —~XR'R
n

which applies Projy, to the rows of X 1is the orthogonal projection onto M with respect

to the Frobenius inner product.

Since ker(Q) = image(R") and dim(image(R")) = d, from Lemma |13, we have:

r(QRTRY) = a1 (Q)|I P17, (A.29)
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where

R*=K+P
1
K = Proj(R*) = —R'R'R (A.30)
n
1
P = R* — Proj,,(R*) = R* — —R*R'R
n
is an orthogonal decomposition of R* and the rows of P are contained in the
orthogonal complement of image(R")

The following lemma provides a bound on ds(R, R*)? in terms of ||P|/%.

Lemma 14. Let R* and R be representatives of their orbits such that ds(R, R*) =
|R — R*||r, and P = R* — Proj,,(R*) as defined in (A.30). Then:

1 *
14s(B R < |PIR. (A31)

Proof. Let X = LRR*T, so that K = X' R. Expanding the left hand side, we have:

T on

d -_R7 R* 2 — R* _ -_R 2
s(B, R = || Iy (A.32)
< |R* —s(XT) R,

from the fact that the orbit distance is obtained as the minimum over G € SO(d) of
the quantity || R* — GR||r, and that by hypothesis this minimum is obtained as || R* —

R||r. Breaking up the norm into its blockwise summands, and from the orthogonal

invariance of the Frobenius norm, we can rearrange this expression as follows:

IR = Ts(XNR[} = > |IR; — Ts(X R}

i=1

= Z IR R — s (X )5

(A.33)

From Lemma [4] we know that each summand in the above expression satisfies

IR; R — Ts(X )7 < 4| RiR] — X7 [[3. (A.34)
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Since this bound is satisfied for each summand, the total summation satisfies

SOIRRT —Us(XT)|3 <4 |RR] — X))}

i=1 i=1

— a4 R - XTR|2 (A.35)
=1
— 4R — X"RJ3.

Since K = X TR, we have:

A|r* = XTR|[p = 4R — K|[5

(A.36)
= 4/ P|I%,
which gives the desired bound. O
With this result, we are ready to prove Theorem [0}
Proof. From (A.29) and (A.26)), we have:
Aar(@QP|F < 2Vdn|| R — R*|[p| AQ] 2. (A.37)

Since, by hypothesis, R* and R are the representatives of their orbits satisfying
ds(R,R*) = |R — R*||r, from Lemma [14] we have

ds(R, R")* < 4||P|. (A.38)

Combining (A.38)) with (A.37)), we obtain:

8V dn||AQ||2
ds(R,R*) < —————=, A.39
s(&, K Air1(Q) ( )
which is what we intended to show. O
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A.3.3 An upper bound on ds(R"), R¥)

In this section, we give a proof of Corollary , bounding the SO(d)™ orbit distance
between the spectral initialization R(®) and the maximum likelihood estimate R*.
First, we establish as the main technical lemma a result that the orbit distances ds

and do on SO(d)™ and O(d)™ are pseudometrics:

Lemma 15 (Orbit distances are pseudometrics). The orbit distances ds and do are
pseudometrics on SO(d)™ and O(d)", respectively. In particular, for all X,Y,Z €
SO(d)"™, we have:

1. ds(X,X)=0

2. ds(X,Y) = ds(Y, X)

3. ds(X,7) <ds(X,Y)+ds(Y, Z),
and likewise for do on O(d)".

Proof. To simplify the subsequent derivation, we prove the result for the orbit distance
ds on SO(d)"; the same argument applies mutatis mutandis to do on O(d)". A
pseudometric on SO(d)™ (resp. O(d)™) is any nonnegative function SO(d)" xSO(d)" —
R satisfying the properties [71]. To establish [1 we have:

ds(X,X) = min [|X -~ GX|p=0 A40
s(X. X) = min X = GX]r =0, (A.40)

since |Al|r > 0 for all A and taking G = I realizes this minimum value.
For [2, we have:
ds(X,Y) = min : |X — GY|r

GeSO(d (A41)

= min ||Y -G'X||p =ds(V,X),
G€SO(d)

where the second line follows from the orthogonal invariance of the Frobenius norm,
and the last line follows from the fact that since GT = G=! € SO(d), then GT ranges
over all of SO(d) as G does.
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Finally, to establish , we aim to prove that for any X,Y, Z € SO(d)™:
ds(X, 7)) <ds(X,Y)+ds(Y, Z). (A.42)

Suppose the orbit distance ds(X,Y) is attained with minimizer G%, € SO(d) and
likewise the distance ds(Y, Z) is attained with minimizer G5, € SO(d). Define:

G2 Gy Gy (A.43)

Now, since G’ is itself the product of two elements of SO(d), we know G' € SO(d),
and therefore:

ds(X,Z) = min || X — GZ||p < ||X — G'Z||p. (A.44)
GEeSO(d)

Examining the right-hand side of this expression, we have:

1X — G'Z||p = | X - Gy Y + GieyY — G' 2|1
<X = GiyY | +]GiyY — G'Z]lr, (A.45)

~

g

ds(X,)Y)

where the last line follows from the triangle inequality for the Frobenius norm. Now,

substitution of the definition (A.43) into the second term of (A.45]) reveals:

||G§<YY - G,Z“F - ||G§(YY - G}YG;ZZ”F
=Y = Gy 2Z|Ir (A.46)
= dS<Y7 Z)>

where the second line follows from the orthogonal invariance of the Frobenius norm.

Taken together, these results give:

which is what we intended to show. O
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Lemma [I5] suggests a straightforward proof of Corollary [7]

Proof. From the triangle inequality for dg, we have:
ds(R”, R*) < ds(R, R©) + ds(R, R"). (A.48)

Substitution of (5.17) and (5.18)) into (A.48)) gives the desired result. O

A.4 Relationship to the method of Moreira et al. [95]

In their recent work, Moreira et al. [95] also propose an estimator for pose-graph
SLAM problems based on eigenvector computations. In this section, we show that
their approach is formally equivalent to the rotation-only variant of the spectral ini-
tialization we discuss in Section and therefore has estimation error satisfying
the bound (5.21)). Moreira et al. [95] specifically consider unweighted rotation mea-
surements, which (from an estimation standpoint) is equivalent to considering the

generative model (.1)) with identical precisions (say x;; = 1) for all edges (i, j) € &.

Their construction begins by considering the matrix M € R¥* with d x d block
1,7 given by:
(
I, ifi=y
Mij=q Ry, {i,j}e€& (A.49)

\ded {i,7} ¢ €.

They observe that for all stationary points R e SO(d)® C R¥dn there is a corre-

sponding matrix A € R%*9" gsuch that:

(A—M)R" =0, (A.50)



where A has the symmetric d x d block diagonal structure:

Al - 0
A=t o . (A.51)

In the noiseless case where M = M the matrix S = A — M is given by |95, Equation
14]:

S=(L®Jy)o M, (A.52)
where £ is the scalar (unweighted) rotational graph Laplacian with 7, j entry:

.

6(i), i=J
Lij=19-1, {ij}ec&, (A.53)

0. e

J; € R¥4 is an all-ones matrix, and o denotes the Hadamard product. Direct com-
parison of ([A.53) with (A.1Db]) reveals that £ is equivalent to L(W?”) when &;; = 1 for
all {i,j} € €. Expanding (A.52), we have:

p

6(i)la, 1= 7],
Sij =19 —Ri;, {i.j}e&,- (A.54)

\OdXdu {ZL]} ¢ g

%)
I

Comparing the definition of L(G?) in (A.2a)) and S in (A.54)), it is straightforward to
verify that S = L(G”) when k;; = 1. From the equivalence of S and L(G"), it follows
that S > 0 and R' € ker(S), so the ground-truth rotations R can be recovered by

computing the d eigenvectors of S corresponding to the smallest eigenvalues of S H

2In keeping with the notation in the rest of this manuscript, we use the notation M to denote
the measurement matrix (A.49) constructed from the ground-truth relative rotations R;;.

3Recall from Section that R lie in ker(L(G?)) and from Section that L(G”) = 0. The
claim then follows from the equivalence of S and L(GP).
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In the case of noisy measurements, Moreira et al. [95] propose to compute, as an
approximation, the eigenvectors of S = (L® J3)o M, which has d x d blocks given
by:

.
0(i)lq, 1=17,
Sij = —Rij, {i,j}€E, (A.55)

\deda {Zh]} ¢ g

The justification given for this approximation is that, in the high signal-to-noise ratio
regime, there ought to exist R € SO(d)" such that SR ~ 0. Once again, however,
directly comparing definitions reveals that the quantity (£ ® J3) o M is identical to
L(G?) with r;; = 1 (cf. equations and (A.2a))). Consequently, Moreira et al.
[95]’s method is actually a particular instance of the spectral estimator we propose in
Section [5.2] corresponding to the special case in which all rotational measurements
have equal weights and the translational measurements have been discarded (i.e. the
rotation-only case discussed in Section. Moreover, viewing this approach through
the lens of the spectral relaxation in Problem [6] provides formal justification for the
method and allows us to derive the explicit performance guarantees given in this

thesis.
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Appendix B

Proofs for Chapter (6]

B.1 Subgradients of the Fiedler value

In this appendix we consider the problem of computing a supergradient of F(w) =
Ao (L(WP)(w)) with respect to w. Strictly speaking, F' need not be differentiable at a
particular w (which occurs specifically when A\y(L(W?)(w)) appears with multiplicity
greater than 1, i.e. it is not a simple eigenvalue). We say that a vector g € R™ is a

supergradient of a concave function F' at w if, for all y, z in the domain of F"

F(y) = F(z) < g"(y — x). (B.1)

Equation generalizes the notion of differentiability to the scenario where the
function F' may not be (uniquely) differentiable a particular point. We call the set of
all supergradients at a particular value of w the superdifferential of F' at w, denoted
OF (w) [116].

We aim to prove the statement that VF(w) as defined in equation (6.5) is a

supergradient of [’ at w.

Proof of Theorem[9. We aim to prove the claim by way of equation . Let u,v €
R™, |lu|lz = [|v|]l2 = 1 be any normalized eigenvectors of L(W?)(x) and L(W*)(y)
with corresponding eigenvalues Ao(L(W*)(z)) and Ao(L(W*)(y)), respectively. By
definition, then, u and v are Fiedler vectors of L(W?)(x) and L(W?)(y), respectively.

141



Then the left-hand side of equation (B.1)) can be written as:

F(y) = F(z) = M(LWP)(y)) = Aa(LW?)(2))
= v LW?)(y)v — u" L(W?)(z)u.

(B.2)

Now, substitution of u for the Fiedler vector into the definition in (6.5)), reveals that
the k-th element of VF(z) is

VE(x), =u' Liu. (B.3)
In turn, the right-hand side of (B.1]) can be written as:

VFE(zx Z Ye — 2)u" Liu. (B.4)
k=1

Since v and v are minimizers of their respective Rayleigh quotient minimization

problems, we know:

VT L(WP)(y)v < u' L(WP)(y)u
m (B.5)
TLou + Z ypu' Liu,
k=1
where the first line follows from the optimality of v with respect to the Rayleigh
quotient for L(W?)(y) and the second line follows from the definition of L(W?)(y).

Consider “adding zero” to each yy, in (B.5]) as xy —x\ to obtain an equivalent expression:

Z yeu' Lju = Z(yk + @y, — ap)u’ L,
(B.6)

zpu’ Lu + Z(yk — ap)u’ Liu.
1 k=1

I
MS I

e
Il

Comparison to (B.4)) reveals that the last term in is exactly equal to VF(x)" (y—
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x). In turn, substitution of (B.4]) into gives:
- Tre,, _ S Tre T
Z ypu Liu = Z ru Liu+ VE(z)' (y — x). (B.7)
k=1 k=1

Substitution back into (B.5|) gives the bound:

VTLWP) (v < u'Lou+ Y s’ Liju+ VF(z) (y — ). (B.8)
k=1

Finally, from the definition of L(W?”)(z), we obtain
v LIWP) (y)v < u' LWP)(z)u + VF(z) (y — z). (B.9)

Subtracting u" L(W*)(x)u from both sides and substituting into (B.2) gives the de-

sired result. O

B.2 Solving the direction-finding subproblem

This appendix aims to prove the claim that provides an optimal solution to the

linear program in Problem [9

Proof of Theorem[10} Rewriting the objective from Problem [9] in terms of the ele-

ments of s and VF(w), we have:
sTVF(w) = s, VE(w)g

! (B.10)

sky" (W) Liy” (W),

NE

k

NE

B
Il

1

where in the last line we have used the definition of VF(w); in (6.5). Now, since
each L{ > 0, every component of the gradient must always be nonnegative, i.e.
VF(w)r > 0. Further, since 0 < s, < 1, the objective in is itself a sum
of nonnegative terms. From this, it follows directly that the objective in is

maximized (subject to the constraint that Y, | s, = K) specifically by selecting (i.e.
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by setting s, = 1) each of the K largest components of VF(w), giving the result in

(6.6). u
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