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Solutions to Problems for Quasi-Linear PDEs 

18.303 Linear Partial Differential Equations 

Matthew J. Hancock 

Fall 2004 

1 Problem  1  

Solve the traffic flow problem 

∂u ∂u 
+ (1  − 2u) = 0, u (x, 0) = f (x)

∂t ∂x 

for an initial traffic group 

1
3
, |x| > 1 

|x| ≤ 1 
f (x) =

5
3 

1
2

− |x|
 , 

(a)  At what time  ts and position xs does a shock first form? 

(b) Sketch the characteristics and indicate the region in the xt-plane in which the 

solution is well-defined (i.e. does not break down). 

(c) Sketch the density profile u = u (x, t) vs.  x for several values of t in the interval 

0 ≤ t ≤ ts. 

Solution: (a) We can rewrite the PDE as 

∂u ∂u 
(1 − 2u, 1, 0) · , , −1 = 0  

∂x ∂t 

We write t, x and u as functions of (r; s), i.e. t (r; s), x (r; s), u (r; s). We have written 

(r; s) to indicate r is the variable that parametrizes the curve, while s is a parameter 

that indicates the position of the particular trajectory on the initial curve. Thus, the 

parametric solution is 

dt dx du 
dr 

= 1, 
dr 

= 1  − 2u, 
dr 

= 0  

with initial condition on r = 0,  

t (0; s) = 0, x (0; s) =  s, u (0; s) =  f (s) .
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where s ∈ R. We find t and u first, since these can be found independently from one 

another. Integrating the ODEs and imposing the IC for t and u gives 

t (r; s) =  r, u (r; s) =  f (s) . (1) 

Substituting for u (r; s) into the  ODE  for  x (r; s) and integrating gives 

x (r; s) =  (1  − 2f (s)) r + const 

Imposing the IC x (0; s) =  s gives 

x (r; s) = (1  − 2f (s)) r + s. (2) 

Combining (1) and (2), the characteristics are 

1 

x = (1  − 2f (s)) t + s = � 3
t + � s, |s| > 1 

|s| − 2 t + s, |s| ≤ 1
3 

The first shock occurs at time 

1 1 
ts = = � 

1 
� = 1  (3)  

2 max  {f ′ (s)} 2 
2 

where the characteristics starting from s = −1 and  s = 0 meet, 

1 2 2 
xs = ts − 1 =  − ts = − . 

3 3 3 

(b) Figure 1 sketch shows the xt-plane up to the shock time t = ts and notes 

the important characteristics by thick solid lines. The thick characteristics divide 

the xt-plane into four regions. In R1 and R4, |s| ≥  1 and  u = f (s) =  1/3. In R2, 

−1 ≤ s ≤ 0, and for fixed t, u increases linearly in x from 1/3 to  5/6. In R3, 0  ≤ s ≤ 1 

and u decreases linearly in x from 5/6 to 1/3. 

(c) In Figure 2, we sketch the density profile u = u (x, t) vs.  x at times t = 0,  1/2 

and t = ts = 1. To do so, we draw imaginary horizontal lines at t = t0 in the xt-plot in 

part (b) and observe at what x-values these cross the important characteristics (thick 

black lines). We already know how u varies in each region, for fixed time. Thus once 

we know the x-values of the characteristics that start at s = −1, 0, 1, we draw the 

corresponding u-values 1/3, 5/6, 1/3, and connect them with lines. 
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Figure 1: Sketch of characteristics up to the shock time t = ts = 1. Thick lines are 

important characteristics. 
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Figure 2: Sketch of density profiles u = u (x, t) vs.  x at times t = 0,  1/2 and  

t = ts = 1.  
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2 Problem 2 : Water waves 

The surface displacement for shallow water waves is governed by (in scaled coordi-

nates), 
3 ∂h ∂h 

1 +  h + = 0  
2 ∂x ∂t 

Here, h = 0 is the mean free surface of the water. Consider the initial water wave 

profile 

h (x, 0) = f (x) =  
ε (1 + cos x) , |x| ≤ π 

(4)
0, |x| > π  

(a) Find the parametric solution and characteristic curves.


Solution: The parametric solution is given by


dt dh dx 3 
= 1, = 0, = 1  +  h 

dr dr dr 2 

with initial conditions t (0) = 0, x (0) = s and h (x, 0) = h (s, 0). Solving the ODEs 

subject to the initial conditions gives the parametric solution 

3 
t = r, h = f (s) , x = 1 +  f (s) t + s (5)

2 

for s ∈ R. 

(b) Show that two characteristics starting at s = s1 and s = s2 where s1, s2 ∈ (0, π) 

intersect at time � � 
2 s1 − s2 

tint = − 
3ε cos s1 − cos s2 

Show that 
2 

tint ≥ , for all s1, s2 ∈ (0, π)
3ε

and 
2 π 

tint → , as s1, s2 → 
3ε 2 

Thus the solution breaks down along the characteristics starting at s = π/2, when 

t = tc = 2/ (3ε). 

Solution: From (5), the solutions starting at s = s1 and s = s2 where s1, s2 ∈ 

(0, π) (and, without loss of generality, s1 < s2) intersect when 

3 3 
1 +  f (s1) tint + s1 = xint = 1 +  f (s2) tint + s2

2 2 

Solving for the time tint gives 

t
2 s2 − s1 

int = 
3 f (s1) − f (s2) 
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Since s1, s2 ∈ (0, π), substituting for f (s) from (4) gives 

t
2 s2 − s1 

int = 
3 ε (1 + cos s1) − ε (1 + cos s2) 
2 s1 − s2 

= − (6)
3ε cos s1 − cos s2 

By the mean value theorem, 

cos s1 − cos s2 = − (s1 − s2) sin  ξ 

for some ξ ∈ [s1, s2] ⊆ (0, π), so that (6) becomes 

2 1 
tint = (7)

3ε sin ξ 

For this range of ξ ∈ [s1, s2] ⊆ (0, π), we have 0 < sin ξ ≤ 1, so that (7) becomes 

2 1 2 
tint = ≥ 

3ε sin ξ 3ε 

Note that as s1, s2 → π/2, ξ also approaches π/2 and hence from (7), 

2 
lim tint = lim tint = 

s1,s2→π/2 ξ→π/2 3ε 

This implies that along the characteristic starting at s = π/2, the solution breaks 

down at t = tc = 2/ (3ε). The x-value where the breakdown occurs is 

3 π 2 π 3ε π 2 π 2 π 
x = 1 +  f + = 1 +  cos + = + . 

2 2 3ε 2 2 2 3ε 2 3ε 2 

(c) Calculate ∂h/∂x using implicitly differentiation (the solution cannot be found 

explicitly) and hence show that along the characteristic starting at s = π/2, 

∂h 
lim = −∞ 

− ∂xt→tc 

Thus the wave slope becomes vertical. 

Solution: By the chain rule, 

∂h 
∂x 

= 
∂h 
∂r 

∂r 
∂x 

+ 
∂h 
∂s 

∂s 
∂x 

= 0  +  f ′ (s) 
∂s 
∂x 

= f ′ (s) 
� 

∂x 
∂s 

�−1 

= 
f ′ (s) 

3 
2
f ′ (s) t + 1  

(8) 

Note that 

f ′ (π/2) = −ε sin 
π 

= −ε,
2 

and hence 
∂h −ε 

= 
∂x − 3εt + 1

2
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Figure 3: Sketch of characteristics up to the shock time t = ts = 2/3. Thick lines are 

important characteristics. We took ε = 1.  

Thus, the limit as t → t− (where tc = 2/ (3ε)) is c 

∂h − ε 
lim = lim = −∞ 

2
− 3− 

c ∂x t→t− 
c εt + 1t→t

(d) Sketch the wave profile h (x, tc), giving the x-values where the wave is vertical 

and where the maximum displacement occurs. 

Note that the extrema of the displacement occurs where ∂h/∂x = 0, or, from (8), 

∂h f ′ (s) 
= = 0  ⇐⇒ ε (− sin x) = 0  ⇐⇒ x = 0, ± π 

∂x 3f ′ (s) t + 1
2

I didn’t ask for this, but to plot the wave profile, you need to know what the char-

acteristics are doing. Figure 3 shows the important characteristics. Again, to find 

the wave profiles at a given time t = t0, we draw an imaginary horizontal line at 

t = t0 in the xt-plot of the characteristics and observe at what x-values this line cross 

the characteristics. We know the h values along each characteristic, and thus we can 

construct a table of x and corresponding h values at time t = t0. Then  we  plot  h 

vs. x. Figure 4 illustrates the wave profiles at t = 0, 1/3, 2/3, for ε = 1. The profile 

becomes vertical along the s = π/2 characteristic at time t = 2/3 at  x = 2/3 +  π/2. 

Come and see me if you have questions about how to do this - it’s pretty simple once 

you get the hang of it. 

The interpretation of the plot is that after a time t = 2/3 (recall ε = 1), the wave 

has moved a distance x = 2/3, it’s tail has gotten longer, and it’s front has steepened. 

6




u(
x,

2/
3)

 
u(

x,
1/

3)
 

u(
x,

0)
 

2


1


0

−4 −3 −2 −1 0 1 2 3 4 

2 

1 

0 
−4 −3 −2 −1 0 1 2 3 4 

2 

1 

0 
−4 −3 −2 −1	 0 1 2 3 4 

x 

Figure 4: Sketch of wave profiles at times t = 0, 1/3, 2/3. At t = 2/3, the wave 

profile is vertical (∂h/∂x = ∞ at x = 2/3 +  π/2, along the s = π/2 characteristic. 

Here, we took ε = 1.  
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3 Problem  3  

Consider the quasi-linear PDE and initial condition 

1 
ut + u ux + u = 0,  t  >  0, −∞ < x <  ∞ 

2 
u (x, 0) = ε sin x, −∞ < x  <  ∞ 

where ε >  0 is constant. 

(a) Find the parametric solution and characteristic curves.


Solution: The PDE can be written as


1 
(A, B, C) · (ux, ut, −1) = u, 1, − u · (ux, ut, −1) = 0. 

2 

The characteristic curves are given by 

dt dx du 1 
= B = 1, = A = u, = C = − u 

dr dr dr 2 

The initial conditions at r = 0  are  t = 0,  x = s, u = f (s) =  ε sin s. Integrating the 

ODEs and imposing the ICs gives 

−t/2 
� � 

t = r, u = f (s) e −r/2 = f (s) e , x = 2f (s) 1 − e −r/2 +s = 2f (s) 
� 
1 − e −t/2 +s 

(9) 

where f (s) =  ε sin s. 

(b) Give the solution u in implicit form by writing u in terms of x, t (but not r, 

s). 

Solution: The second and third equations in (9) are 

u = f (s) e −t/2 , x = 2f (s) 1 − e −t/2 + s 

Noting that f (s) =  ε sin s = uet/2, we  have  � 
uet/2 

� 

x = 2uet/2 1 − e −t/2 + arcsin  
ε � 

uet/2 
� 

= 2u et/2 − 1 + arcsin  
ε 

Thus, the solution u is given implicitly via 

� � �� uet/2 

sin x + 2u 1 − et/2 = (10)
ε 

(c) For ε = 1, show that the solution first breaks down at t = tc = 2 ln 2. Show 

that along the characteristic through (x, t) = (π, 0), we have 

lim ux = −∞. 
−t→tc 
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Solution: The Jacobian is 

1 − e−r/2∂ (x, t) 
= det  

xr xs 
= det  

u 2f ′ (s) + 1
= −2f ′ (s) 

� 
1 − e −r/2 

� −1 
∂ (r, s) tr ts 1 0 

The solution breaks down when the Jacobian is zero, or 

−2f ′ (s) 1 − e −r/2 − 1 =  0  

Since r = t and f ′ (s) =  ε cos s, we have  

2ε cos s 1 − e −t/2 = −1 (11) 

Note that the breakdown must occur for t >  0, since t = 0 will not satisfy the 

above equation. Also, 1 − e−t/2 > 0 since  t >  0. Thus the breakdown occurs when 

cos s <  0 and  t >  0. The smallest time for breakdown occurs at the most negative 

value of cos s, i.e., cos s = −1, when 

1 − 
1

= e −tc/2 

2ε 

or � � 
1 

tc = −2 ln  1 − 
2ε 

Since ε = 1, the first breakdown occurs at tc = 2  ln  2.  

To find the s for the characteristic that passes through (x, t) = (π, 0), we substitute 

t = 0,  x = π into the equation for x in (9), 

π = x = 2f (s) 1 − e −t/2 
� 

+ s = s 

Thus s = π. Substituting s = π into (9) gives 

x = 2ε (sin π) 1 − e −t/2 
� 

+ π = π 

u = ε (sin π) e −t/2 = 0  

Thus x = π and u = 0 along this characteristic. To find ux, we differentiate (10) 

(with ε = 1) implicitly with respect to x, 

� � �� � � �� 
t/2 cos x + 2u 1 − et/2 1 + 2ux 1 − et/2 = uxe

Substituting x = π and u = 0  gives  

t/2− 1 +  2ux 1 − et/2 = uxe

9 
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Figure 5: Sketch of characteristics up to the shock time t = tc = 2 ln 2. Thick lines 

are important characteristics. 

Solving for ux gives 
1 

ux = 
et/2 − 2 

For s = π, cos  s = −1, so that the solution breaks down along this characteristic 

at t = tc = 2  ln  2.  As  t → t− 
c , the limit of ux is 

1 
lim ux = lim = −∞ 

et/2 − 2− 
c t→t− 

ct→t

(d) For ε = 1, sketch the characteristics and the solution profile at time tc. 

Solution: Since the initial condition is periodic, we must only plot the region 

0 ≤ x ≤ 2π, t ≥ 0. The solution is repeated in the other regions 2 (n − 1) π ≤ x ≤ 

2nπ, for all integers n. Note  that  x = π is a line of symmetry. To see this, consider 

the characteristics s = π/2 and  s = 3π/2 with  ε = 1,  
π � 

s = =⇒ x = 2  1 − e −t/2 
� 

+ 
π 

2 2 
π � � � � π 

s = =⇒ x = −2 1 − e −t/2 
� 

+
3π 

= − 2 1 − e −t/2 + + 2π 
2 2 2 

A few characteristics are plotted in Figure 5 up to the time t = tc. 

Substituting ε = 1  and  t = tc = 2 ln 2 into the implicit solution (10) gives 

sin (x − 2u) = 2u 

and hence 

x = 2u + arcsin  (2u) 

Choosing values for u in [0, 0.5], we compute the corresponding x-values. Just be 

careful that the angles arcsin returns can be in the first or second quadrant, so that 

you get two sets of x-values 

x = 2u + arcsin  (2u) 

x = 2u + π − arcsin (2u) 
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Figure 6: Sketch of u(x, tc) profile (tc = 2  ln  2,  ε = 1). Since u(x, t) is  2π-periodic in 

x, the  u(x, t) is given by periodicity for values of x outside the region plotted. 

Plotting these two sets of points gives you u (x, tc) in  [0, π]. To get u in [π, 2π], recall 

it is 2π periodic. We first find x for u in [−0.5, 0] and then translate the resulting 

x-values by 2π. The plot is given in Figure 6. 

(e) Show that the solution exists for all time if 0 < ε  ≤ 1/2. 

Solution: Recall that the solution breaks down if there is an s and t that satisfy 

Eq. (11), 

2ε (cos s) 1 − e −t/2 
� 

= −1 

For 0 < ε  ≤ 1/2, we have 0 < 2ε ≤ 1 and  for  t ≥ 0, 0 ≤ 1 − e−t/2 < 1, so that 

�2ε (cos s) 1 − e −t/2 � < 1 

Thus Eq. (11) cannot be satisfied, and the solution is valid for all time t ≥ 0. 
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