Solution to the non-homogenous PDE from class:

$x u_{x}+y u_{y}=1+y^{2}$ with boundary condition $u(x, 1)=x+1=f(x)$
(I add the $=f(x)$ just to point out that the initial condition depends only on x, while our final solution will depend on both x and y).
We start by forming the characteristic equations:
$\frac{d x}{d s}=x($ you can use $d t$ instead of $d s$ if you want)
$\frac{d y}{d s}=y$
$\frac{d u}{d s}=1+y^{2}$
Integrating each of these in turn, we get:
$\frac{d x}{d s}=x \Longrightarrow \ln (x)=s+c \Longrightarrow x=c_{1} e^{s}$
$\frac{d y}{d x}=y \Longrightarrow \ln (y)=s+c \Longrightarrow y=c_{2} e^{s}$
For $\frac{d u}{d s}=1+y^{2}$, note that s and y are NOT independent so you cannot treat y as a constant and integrate by $d s$. Instead, note that $\frac{d y}{d s}=y \Longrightarrow d s=\frac{1}{y} d y$.
So then:
$\frac{d u}{d s}=1+y^{2} \Longrightarrow d u=1+y^{2} d s=\frac{1+y^{2}}{y} d y=\frac{1}{y}+y d y=\ln (y)+\frac{y^{2}}{2}+c_{3}$.
Now we apply the initial conditions to solve for c_{1}, c_{2} and c_{3}.
We have $y(s=0)=1$ from the boundary condition. So:

$$
c_{2} e^{0}=1 \Longrightarrow c_{2}=1
$$

For $x(s=0)$, you might think that the boundary condition gives $x(s=0)=$ $x+1$, but this is not quite true as then you would write $x=x$ which is quite useless. Instead, x (which is a function) has one fixed value at $s=0$, which we can call x_{0} (or as Alec called it in class, B) so that:

$$
x(s=0)=x_{0}=c_{1} e^{0} \Longrightarrow c_{1}=x_{0} .
$$

Similarly, $u(s=0)=\ln (y)+y^{2}+c_{3}=1+x(s=0)=1+x_{0}($ NOT $1+x!)$

$$
\Longrightarrow c_{3}=1+x_{0}-\frac{1}{2}=\frac{1}{2}+x_{0} .
$$

Now we substitute in c_{1}, c_{2}, c_{3} to get:
$x=x_{0} e^{s}$
$y=e^{s}$
$u=\ln (y)+\frac{y^{2}}{2}+\frac{1}{2}+x_{0}$
We have three equations with two unknowns (s and x_{0}) so we can eliminate them to get an equation of u in terms of x and y only - this is the solution!
So $u=\ln (y)+\frac{y^{2}}{2}+\frac{1}{2}+x_{0}$
$=\ln (y)+\frac{y^{2}}{2}+\frac{1}{2}+x e^{-s}\left(\right.$ substituting $\left.x=x_{0} e^{s}\right)$
$=\ln (y)+\frac{y^{2}}{2}+\frac{1}{2}+\frac{x}{y}\left(\right.$ substituting $\left.y=e^{s}\right)$
so we have our final solution $u(x, y)=\ln (y)+\frac{y^{2}}{2}+\frac{1}{2}+\frac{x}{y}$.
It's easy to check if the solution is right by substituting it into the original equation:
$x u_{x}+y u_{y}=1+y^{2}$
with $u_{x}=\frac{1}{y}$ and $u_{y}=\frac{1}{y}+y+\frac{-x}{y^{2}}$
and so $x u_{x}+y u_{y}=\frac{x}{y}+\frac{y}{y}+y^{2}-\frac{x y}{y^{2}}=1+y^{2}$, as required.

To recap - the steps to solve a PDE:

1) Form the characteristic equations $d x / d s, d y / d s, d u / d s$ etc noting that x, y, u may not be independent of s for integration purposes.
2) Each of the char. equations should have solutions that depend on general constants c_{1}, c_{2} etc - solve for these.
3) Put in the initial condition to generate x_{0} - you will now have two unknowns (s and x_{0}).
4) Solve for u, which will likely be in terms of $\left(x, y, x_{0}, s\right)$, and then substitute until you can get rid of s and x_{0} and then you will only have u in terms of (x, y) - this is your solution.
