Evolution of Oceanic Margins: Rifting in the Gulf of California and Sediment Diapirism and Mantle Hydration During Subduction

Nathaniel Miller, Ph.D., 2013
Daniel Lizarralde, Advisor

This thesis investigates three processes that control the evolution of oceanic margins. Chapter 2 presents seismic images of a ~2-km-thick evaporite body in Guaymas Basin, central Gulf of California. In rifts, evaporites form under conditions unique to the latest stages of continental rupture, and the presence, age, thickness, and shape place new constraints on the history of early rifting there. Chapter 3 presents numerical experiments that show that diapirs can form in sediments on the down-going plate in subduction zones and rise into the mantle wedge, delivering the sedimentary component widely observed in arc magmas. Chapter 4 presents measurements of seismic anisotropy from wide-angle, active-source data from the Middle America Trench that address the hypothesis that the upper mantle is hydrated by seawater flowing along outer-rise normal faults. These measurements indicate that the upper mantle is ~1.57 to 6.89% anisotropic, and this anisotropy can be attributed to bending-related faulting and an inherited mantle fabric. Accounting for anisotropy reduces previous estimates for the amount of water stored in the upper mantle of the down-going plate from ~2.5 to 1.5 wt%, a significant change in subduction zone water budgets.