A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula

Cristina Schultz, Ph.D., 2019
Scott Doney, Co-advisor
Weifeng Zhang, Co-advisor

Over the past several decades, the West Antarctic Peninsula has undergone physical and ecological changes at a rapid pace, with warming surface ocean and a sharp decrease in the duration of the sea ice season. The impact of these changes in the ocean chemistry and ecosystem are not fully understood and have been investigated by the Palmer-LTER since 1991. Given the sampling constraints imposed by weather conditions in this region, an ocean circulation, sea ice and biogeochemistry model was implemented to help fill the gaps in the dataset. The results with the present best case from the suite of sensitivity experiments indicate that the model is able to represent the seasonal and interannual variations observed in the circulation, water mass distribution and sea ice observed in the WAP, and has identified gaps in the observations that could guide improvement of the simulation of the regional biogeochemistry. Comparison of model results with data from the Palmer-LTER project suggests that the large spatial and temporal variability observed in the phytoplankton bloom in the WAP is influenced by variability in the glacial sources of dissolved iron, and that the model successfully represents the interannual variability of the inorganic carbon cycle in this region.