Demographics of Lytic Viral Infection in Coastal Ocean Vibrio

Kathryn Kauffman, Ph.D., 2014
Martin Polz, Advisor

Viral predation on bacteria in the ocean liberates carbon from the particulate fraction, where it is accessible to higher trophic levels, and redirects it to the dissolved fraction, where it supports microbial growth. Although viruses are highly abundant in the ocean little is known about how their interactions with bacteria are structured. This challenge arises because the diversity of both bacteria and viruses is exceedingly high and interactions between them are mediated by specific molecular interactions. This thesis uses heterotrophic bacteria of the genus Vibrio as a model to quantify virus-host interactions in light of host population structure and ecology. Here, >1300 newly isolated Vibrio are assayed for infection by viral predators and susceptibility is found to be common, though total concentrations of predators are highly skewed, with most present at low abundance. The largest phylogenetically-resolved host range cross test available to date is conducted, using 260 viruses and 277 bacterial strains, and highly-specific viruses are found to be prevalent, with nearly half infecting only a single host in the panel. Integration of host population structure with sequencing of over 250 viral genomes reveals cohesive viral groups and distinct regimes of viral predation among closely-related and co-occurring populations of bacteria.