Species-Specific Patterns in Bivalve Larval Supply to a Coastal Embayment

Christine Mingione Thompson, Ph.D., 2011
Scott Gallager, Advisor

Larval supply is an important process linking reproductive output to recruitment of benthic marine invertebrates. Few species-specific studies of bivalve larvae have been performed due to the lack of suitable methods for species identification. This thesis focused on applying a method to identify larvae from field samples from Waquoit Bay, MA using shell birefringence patterns. This method was then used to address variability in larval supply for three bivalve species on weekly, tidal, and hourly scales.

Sampling weekly for six months during two years showed large variability in larval concentrations on this time scale. Abundances of most species were related to bay temperature, and species distributions among sampling sites were indicative of transport potential and population coherence. Greater growth of larvae in 2009 compared to 2007 was attributed to more wind-induced mixing and better food availability in 2009.

Integrative samples over each tidal event for a 14-day period demonstrated that larvae were mostly constrained by water masses. During a period when there were sharp tidal signals in temperature and salinity, larval concentrations were higher in bay water compared to coastal waters on incoming tides. After a storm event, water mass properties were less distinct between tidal events and a semidiurnal signal in larval concentrations was no longer apparent. The timing of periods of high larval concentrations did not always coincide with periods of highest water mass flux reducing net export in some cases. On an hourly scale, the vertical distribution of larvae affected by water column stratification and strength of tidal flow. Strong currents and a fresh upper layer both prevented larvae from concentrating at the surface. There was little evidence of peaks in larval concentrations associated with a given tidal period.

Species-specific data can provide new perspectives on larval transport. For the three species studied, Anomia simplex, Guekensia demissa, and Mercenaria mercenaria, different source areas, patterns for growth, and potential for export were observed. Applying species-specific identification methods to future studies of bivalve larval transport has the potential to relate larval abundance to settlement patterns, an important component of larval ecology and shellfish management.